Entity Type Recognition for Heterogeneous Semantic Graphs

AI Magazine

Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. Big data problems that involve integrating data from multiple sources can benefit from our approach when the data's ontologies are unknown, inaccessible, or semantically trivial. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase, and Arnetminer using DBpedia as the background knowledge base. Annotating data elements with semantic representations can help manage two of them: variety and veracity.


Entity Type Recognition for Heterogeneous Semantic Graphs

AI Magazine

We describe an approach for identifying fine-grained entity types in heterogeneous data graphs that is effective for unstructured data or when the underlying ontologies or semantic schemas are unknown. Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. Big data problems that involve integrating data from multiple sources can benefit from our approach when the datas ontologies are unknown, inaccessible or semantically trivial. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase, and Arnetminer using DBpedia as the background knowledge base.


Taming Wild Big Data

AAAI Conferences

Wild Big Data (WBD) is data that is hard to extract, understand, and use due to its heterogeneous nature and volume. It typically comes without a schema, is obtained from multiple sources and provides a challenge for information extraction and integration. We describe a way to subduing WBD that uses techniques and resources that are popular for processing natural language text. The approach is applicable to data that is presented as a graph of objects and relations between them and to tabular data that can be transformed into such a graph. We start by applying topic models to contextualize the data and then use the results to identify the potential types of the graph's nodes by mapping them to known types found in large open ontologies such as Freebase, and DBpedia. The results allow us to assemble coarse clusters of objects that can then be used to interpret the link and perform entity disambiguation and record linking.


Ontology Instance Linking: Towards Interlinked Knowledge Graphs

AAAI Conferences

Due to the decentralized nature of the Semantic Web, the same real-world entity may be described in various data sources with different ontologies and assigned syntactically distinct identifiers. In order to facilitate data utilization and consumption in the Semantic Web, without compromising the freedom of people to publish their data, one critical problem is to appropriately interlink such heterogeneous data. This interlinking process is sometimes referred to as Entity Coreference, i.e., finding which identifiers refer to the same real-world entity. In this paper, we first summarize state-of-the-art algorithms in detecting such coreference relationships between ontology instances. We then discuss various techniques in scaling entity coreference to large-scale datasets. Finally, we present well-adopted evaluation datasets and metrics, and compare the performance of the state-of-the-art algorithms on such datasets.


Sleeman

AAAI Conferences

We describe an approach to reducing the computational cost of identifying coreferent instances in heterogeneous semantic graphs where the underlying ontologies may not be informative or even known. The problem is similar to coreference resolution in unstructured text, where a variety of linguistic clues and contextual information is used to infer entity types and predict coreference. Semantic graphs, whether in RDF or another formalism, are semi-structured data with very different contextual clues and need different approaches to identify potentially coreferent entities. When their ontologies are unknown, inaccessible or semantically trivial, coreference resolution is difficult. For such cases, we can use supervised machine learning to map entity attributes via dictionaries based on properties from an appropriate background knowledge base to predict instance entity types, aiding coreference resolution. We evaluated the approach in experiments on data from Wikipedia, Freebase and Arnetminer and DBpedia as the background knowledge base.