Deep State Space Models for Time Series Forecasting

Neural Information Processing Systems

We present a novel approach to probabilistic time series forecasting that combines state space models with deep learning. By parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, our method retains desired properties of state space models such as data efficiency and interpretability, while making use of the ability to learn complex patterns from raw data offered by deep learning approaches. Our method scales gracefully from regimes where little training data is available to regimes where data from large collection of time series can be leveraged to learn accurate models. We provide qualitative as well as quantitative results with the proposed method, showing that it compares favorably to the state-of-the-art.


Deep State Space Models for Time Series Forecasting

Neural Information Processing Systems

We present a novel approach to probabilistic time series forecasting that combines state space models with deep learning. By parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, our method retains desired properties of state space models such as data efficiency and interpretability, while making use of the ability to learn complex patterns from raw data offered by deep learning approaches. Our method scales gracefully from regimes where little training data is available to regimes where data from millions of time series can be leveraged to learn accurate models. We provide qualitative as well as quantitative results with the proposed method, showing that it compares favorably to the state-of-the-art.


Multi-task Learning for Maritime Traffic Surveillance from AIS Data Streams

arXiv.org Machine Learning

In a world of global trading, maritime safety, security and efficiency are crucial issues. We propose a multi-task deep learning framework for vessel monitoring using Automatic Identification System (AIS) data streams. We combine recurrent neural networks with latent variable modeling and an embedding of AIS messages to a new representation space to jointly address key issues to be dealt with when considering AIS data streams: massive amount of streaming data, noisy data and irregular time-sampling. We demonstrate the relevance of the proposed deep learning framework on real AIS datasets for a three-task setting, namely trajectory reconstruction, anomaly detection and vessel type identification.


Learning brain regions via large-scale online structured sparse dictionary learning

Neural Information Processing Systems

We propose a multivariate online dictionary-learning method for obtaining decompositions of brain images with structured and sparse components (aka atoms). Sparsity is to be understood in the usual sense: the dictionary atoms are constrained to contain mostly zeros. By "structured", we mean that the atoms are piece-wise smooth and compact, thus making up blobs, as opposed to scattered patterns of activation. We propose to use a Sobolev (Laplacian) penalty to impose this type of structure. Combining the two penalties, we obtain decompositions that properly delineate brain structures from functional images.


Auto-Regressive HMM Inference with Incomplete Data for Short-Horizon Wind Forecasting

Neural Information Processing Systems

Accurate short-term wind forecasts (STWFs), with time horizons from 0.5 to 6 hours, are essential for efficient integration of wind power to the electrical power grid. Physical models based on numerical weather predictions are currently not competitive, and research on machine learning approaches is ongoing. Two major challenges confronting these efforts are missing observations and weather-regime induced dependency shifts among wind variables at geographically distributed sites. In this paper we introduce approaches that address both of these challenges. We describe a new regime-aware approach to STWF that use auto-regressive hidden Markov models (AR-HMM), a subclass of conditional linear Gaussian (CLG) models.