Decision Making in Complex Multiagent Contexts: A Tale of Two Frameworks

AI Magazine

It involves choosing optimally between different lines of action in various information contexts that range from perfectly knowing all aspects of the decision problem to having just partial knowledge about it. The physical context often includes other interacting autonomous systems, typically called agents. In this article, I focus on decision making in a multiagent context with partial information about the problem. Relevant research in this complex but realistic setting has converged around two complementary, general frameworks and also introduced myriad specializations on its way. I put the two frameworks, decentralized partially observable Markov decision process (Dec-POMDP) and the interactive partially observable Markov decision process (I-POMDP), in context and review the foundational algorithms for these frameworks, while briefly discussing the advances in their specializations.


Decision Making in Complex Multiagent Contexts: A Tale of Two Frameworks

AI Magazine

Decision making is a key feature of autonomous systems. It involves choosing optimally between different lines of action in various information contexts that range from perfectly knowing all aspects of the decision problem to having just partial knowledge about it. The physical context often includes other interacting autonomous systems, typically called agents. In this article, I focus on decision making in a multiagent context with partial information about the problem. Relevant research in this complex but realistic setting has converged around two complementary, general frameworks and also introduced myriad specializations on its way. I put the two frameworks, decentralized partially observable Markov decision process (Dec-POMDP) and the interactive partially observable Markov decision process (I-POMDP), in context and review the foundational algorithms for these frameworks, while briefly discussing the advances in their specializations. I conclude by examining the avenues that research pertaining to these frameworks is pursuing.




Monte Carlo Sampling Methods for Approximating Interactive POMDPs

arXiv.org Artificial Intelligence

Partially observable Markov decision processes (POMDPs) provide a principled framework for sequential planning in uncertain single agent settings. An extension of POMDPs to multiagent settings, called interactive POMDPs (I-POMDPs), replaces POMDP belief spaces with interactive hierarchical belief systems which represent an agent's belief about the physical world, about beliefs of other agents, and about their beliefs about others' beliefs. This modification makes the difficulties of obtaining solutions due to complexity of the belief and policy spaces even more acute. We describe a general method for obtaining approximate solutions of I-POMDPs based on particle filtering (PF). We introduce the interactive PF, which descends the levels of the interactive belief hierarchies and samples and propagates beliefs at each level. The interactive PF is able to mitigate the belief space complexity, but it does not address the policy space complexity. To mitigate the policy space complexity -- sometimes also called the curse of history -- we utilize a complementary method based on sampling likely observations while building the look ahead reachability tree. While this approach does not completely address the curse of history, it beats back the curse's impact substantially. We provide experimental results and chart future work.