Collaborating Authors

Robust Global Localization Using Clustered Particle Filtering

AAAI Conferences

Global mobile robot localiz ation is the problem of determining a robot's pose in an environment, using sensor data, when the starting position is unknown. A family of probabilistic algorithms known as Monte Carlo Localization (MCL) is currently among the most popular methods for solving this problem. MCL algorithms represent a robot's belief by a set of weighted samples, which approximate the posterior probability of where the robot is located by using a Bayesian formulation of th e localization problem. This article presents an extension to the MCL algorithm, which addresses its problems when localizing in highly symmetrical environments; a situation where MCL is often unable to correctly track equally probable poses for the robot. The problem arises from the fact that sample sets in MCL often become impoverished, when samples are generated according to their posterior likelihood. Our approach incorporates the idea of clusters of samples and modifies the proposal distribution considering the probability mass of those cluste rs. Experimental results are presented that show that this new extension to the MCL algorithm successfully localizes in symmetric environments where ordinary MCL often fails.

KLD-Sampling: Adaptive Particle Filters

Neural Information Processing Systems

Over the last years, particle filters have been applied with great success to a variety of state estimation problems. We present a statistical approach to increasing the efficiency of particle filters by adapting the size of sample sets on-the-fly. The key idea of the KLD-sampling method is to bound the approximation error introduced by the sample-based representation of the particle filter. The name KLD-sampling is due to the fact that we measure the approximation error by the Kullback-Leibler distance. Our adaptation approach chooses a small number of samples if the density is focused on a small part of the state space, and it chooses a large number of samples if the state uncertainty is high. Both the implementation and computation overhead of this approach are small. Extensive experiments using mobile robot localization as a test application show that our approach yields drastic improvements over particle filters with fixed sample set sizes and over a previously introduced adaptation technique.

Monte Carlo Localization: Efficient Position Estimation for Mobile Robots Dieter Fox, Wolfram Burgard, Frank Dellaert, Sebastian Thrun

AAAI Conferences

This paper presents a new algorithm for mobile robot localization, called Monte Carlo Localization (MCL). MCL is a version of Markov localization, a family of probabilistic approaches that have recently been applied with great practical success. However, previous approaches were either computationally cumbersome (such as grid-based approaches that represent the state space by high-resolution 3D grids), or had to resort to extremely coarse-grained resolutions. Our approach is computationally efficient while retaining the ability to represent (almost) arbitrary distributions. MCL applies sampling-based methods for approximating probability distributions, in a way that places computation "where needed." The number of samples is adapted online, thereby invoking large sample sets only when necessary. Empirical results illustrate that MCL yields improved accuracy while requiring an order of magnitude less computation when compared to previous approaches. It is also much easier to implement.

Hybrid Inference for Sensor Network Localization using a Mobile Robot

AAAI Conferences

In this paper, we consider a hybrid solution to the sensor network position inference problem, which combines a real-time filtering system with information from a more expensive, global inference procedure to improve accuracy and prevent divergence. Many online solutions for this problem make use of simplifying assumptions, such as Gaussian noise models and linear system behaviour and also adopt a filtering strategy which may not use available information optimally. These assumptions allow near real-time inference, while also limiting accuracy and introducing the potential for ill-conditioning and divergence. We consider augmenting a particular realtime estimation method, the extended Kalman filter (EKF), with a more complex, but more highly accurate, inference technique based on Markov Chain Monte Carlo (MCMC) methodology. Conventional MCMC techniques applied to this problem can entail significant and time consuming computation to achieve convergence. To address this, we propose an intelligent bootstrapping process and the use of parallel, communicative chains of different temperatures, commonly referred to as parallel tempering. The combined approach is shown to provide substantial improvement in a realistic simulated mapping environment and when applied to a complex physical system involving a robotic platform moving in an office environment instrumented with a camera sensor network.

GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model Machine Learning

Central to robot exploration and mapping is the task of persistent localization in environmental fields characterized by spatially correlated measurements. This paper presents a Gaussian process localization (GP-Localize) algorithm that, in contrast to existing works, can exploit the spatially correlated field measurements taken during a robot's exploration (instead of relying on prior training data) for efficiently and scalably learning the GP observation model online through our proposed novel online sparse GP. As a result, GP-Localize is capable of achieving constant time and memory (i.e., independent of the size of the data) per filtering step, which demonstrates the practical feasibility of using GPs for persistent robot localization and autonomy. Empirical evaluation via simulated experiments with real-world datasets and a real robot experiment shows that GP-Localize outperforms existing GP localization algorithms.