Collaborating Authors

Coupled Representation Learning for Domains, Intents and Slots in Spoken Language Understanding Machine Learning

ABSTRACT Representation learning is an essential problem in a wide range of applications and it is important for performing downstream tasks successfully. In this paper, we propose a new model that learns coupled representations of domains, intents, and slots by taking advantage of their hierarchical dependency in a Spoken Language Understanding system. Our proposed model learns the vector representation of intents based on the slots tied to these intents by aggregating the representations of the slots. Similarly, the vector representation of a domain is learned by aggregating the representations of the intents tied to a specific domain. To the best of our knowledge, it is the first approach to jointly learning the representations of domains, intents, and slots using their hierarchical relationships.

Parsing Coordination for Spoken Language Understanding Machine Learning

ABSTRACT Typical spoken language understanding systems provide narrow semantic parses using a domain-specific ontology. The parses contain intents and slots that are directly consumed by downstream domain applications. In this work we discuss expanding such systems to handle compound entities and intents by introducing a domain-agnostic shallow parser that handles linguistic coordination. We show that our model for parsing coordination learns domain-independent and slot-independent features and is able to segment conjunct boundaries of many different phrasal categories. We also show that using adversarial training can be effective for improving generalization across different slot types for coordination parsing. Index Terms-- spoken language understanding, chunking, coordination 1. INTRODUCTION A typical spoken language understanding (SLU) system maps user utterances to domain-specific semantic representations that can be factored into an intent and slots [1, 2]. For example, an utterance, "what is the weather like in boston" has one intent WeatherInfo and one slot type CityName whose value is "boston." Thus, parsing for such systems is often factored into two separate tasks: intent classification and entity recognition whose results are consumed by downstream domain applications.

Context Aware Conversational Understanding for Intelligent Agents With a Screen

AAAI Conferences

We describe an intelligent context-aware conversational system that incorporates screen context information to service multimodal user requests. Screen content is used for disambiguation of utterances that refer to screen objects and for enabling the user to act upon screen objects using voice commands. We propose a deep learning architecture that jointly models the user utterance and the screen and incorporates detailed screen content features. Our model is trained to optimize end to end semantic accuracy across contextual and non-contextual functionality, therefore learns the desired behavior directly from the data. We show that this approach outperforms a rule-based alternative, and can be extended in a straightforward manner to new contextual use cases. We perform detailed evaluation of contextual and non-contextual use cases and show that our system displays accurate contextual behavior without degrading the performance of non-contextual user requests.

Extreme Model Compression for On-device Natural Language Understanding Artificial Intelligence

In this paper, we propose and experiment with techniques for extreme compression of neural natural language understanding (NLU) models, making them suitable for execution on resource-constrained devices. We propose a task-aware, end-to-end compression approach that performs word-embedding compression jointly with NLU task learning. We show our results on a large-scale, commercial NLU system trained on a varied set of intents with huge vocabulary sizes. Our approach outperforms a range of baselines and achieves a compression rate of 97.4% with less than 3.7% degradation in predictive performance. Our analysis indicates that the signal from the downstream task is important for effective compression with minimal degradation in performance.

Improving Semantic Parsing for Task Oriented Dialog Artificial Intelligence

Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembling, and pairwise re-ranking based on a language model. We taxonomize the errors possible for the hierarchical representation, such as wrong top intent, missing spans or split spans, and show that the three approaches correct different kinds of errors. The best model combines the three techniques and gives 6.4% better exact match accuracy than the state-of-the-art, with an error reduction of 33%, resulting in a new state-of-the-art result on the Task Oriented Parsing (TOP) dataset.