SMART Electronic Legal Discovery Via Topic Modeling

AAAI Conferences

Electronic discovery is an interesting subproblem of information retrieval in which one identifies documents that are potentially relevant to issues and facts of a legal case from an electronically stored document collection (a corpus). In this paper, we consider representing documents in a topic space using the well-known topic models such as latent Dirichlet allocation and latent semantic indexing, and solving the information retrieval problem via finding document similarities in the topic space rather doing it in the corpus vocabulary space. We also develop an iterative SMART ranking and categorization framework including human-in-the-loop to label a set of seed (training) documents and using them to build a semi-supervised binary document classification model based on Support Vector Machines. To improve this model, we propose a method for choosing seed documents from the whole population via an active learning strategy. We report the results of our experiments on a real dataset in the electronic discovery domain.

Ordering-Sensitive and Semantic-Aware Topic Modeling

AAAI Conferences

Topic modeling of textual corpora is an important and challenging problem. In most previous work, the “bag-of-words” assumption is usually made which ignores the ordering of words. This assumption simplifies the computation, but it unrealistically loses the ordering information and the semantic of words in the context. In this paper, we present a Gaussian Mixture Neural Topic Model (GMNTM) which incorporates both the ordering of words and the semantic meaning of sentences into topic modeling. Specifically, we represent each topic as a cluster of multi-dimensional vectors and embed the corpus into a collection of vectors generated by the Gaussian mixture model. Each word is affected not only by its topic, but also by the embedding vector of its surrounding words and the context. The Gaussian mixture components and the topic of documents, sentences and words can be learnt jointly. Extensive experiments show that our model can learn better topics and more accurate word distributions for each topic. Quantitatively, comparing to state-of-the-art topic modeling approaches, GMNTM obtains significantly better performance in terms of perplexity, retrieval accuracy and classification accuracy.

Explicit Versus Latent Concept Models for Cross-Language Information Retrieval

AAAI Conferences

The field of information retrieval and text manipulation (classification, clustering) still strives for models allowing semantic information to be folded in to improve performance with respect to standard bag-of-word based models. Many approaches aim at a concept-based retrieval, but differ in the nature of the concepts, which range from linguistic concepts as defined in lexical resources such as WordNet, latent topics derived from the data itself—as in Latent Semantic Indexing (LSI) or (Latent Dirichlet Allocation (LDA)—to Wikipedia articles as proxies for concepts, as in the recently proposed Explicit Semantic Analysis (ESA) model. A crucial question which has not been answered so far is whether models based on explicitly given concepts (as in the ESA model for instance) perform inherently better than retrieval models based on "latent" concepts (as in LSI and/or LDA). In this paper we investigate this question closer in the context of a cross-language setting, which inherently requires concept-based retrieval bridging between different languages. In particular, we compare the recently proposed ESA model with two latent models (LSI and LDA) showing that the former is clearly superior to the both. From a general perspective, our results contribute to clarifying the role of explicit vs. implicitly derived or latent concepts in (cross-language) information retrieval research.

Reading Tea Leaves: How Humans Interpret Topic Models

Neural Information Processing Systems

Probabilistic topic models are a popular tool for the unsupervised analysis of text, providing both a predictive model of future text and a latent topic representation of the corpus. Practitioners typically assume that the latent space is semantically meaningful. It is used to check models, summarize the corpus, and guide exploration ofits contents. However, whether the latent space is interpretable is in need of quantitative evaluation. In this paper, we present new quantitative methods for measuring semantic meaning in inferred topics. We back these measures with large-scale user studies, showing that they capture aspects of the model that are undetected by previous measures of model quality based on held-out likelihood. Surprisingly, topic models which perform better on held-out likelihood may infer less semantically meaningful topics.