Subramani, Nishant (Northwestern University) | Downey, Doug (Northwestern University)

Causal graphs, such as directed acyclic graphs (DAGs) and partial ancestral graphs (PAGs), represent causal relationships among variables in a model. Methods exist for learning DAGs and PAGs from data and for converting DAGs to PAGs. However, these methods only output a single causal graph consistent with the independencies/dependencies (the Markov equivalence class M) estimated from the data. However, many distinct graphs may be consistent with M, and a data modeler may wish to select among these using domain knowledge. In this paper, we present a method that makes this possible. We introduce PAG2ADMG, the first method for enumerating all causal graphs consistent with M, under certain assumptions. PAG2ADMG converts a given PAG into a set of acyclic directed mixed graphs (ADMGs). We prove the correctness of the approach and demonstrate its efficiency relative to brute-force enumeration.

We extend Andersson-Madigan-Perlman chain graphs by (i) relaxing the semidirected acyclity constraint so that only directed cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. We introduce global, and ordered local and pairwise Markov properties for the new models. We show the equivalence of these properties for strictly positive probability distributions. We also show that when the random variables are continuous, the new models can be interpreted as systems of structural equations with correlated errors. This enables us to adapt Pearl's do-calculus to them. Finally, we describe an exact algorithm for learning the new models from observational and interventional data via answer set programming.

Shpitser, Ilya, Richardson, Thomas S., Robins, James M., Evans, Robin

The constraints arising from DAG models with latent variables can be naturally represented by means of acyclic directed mixed graphs (ADMGs). Such graphs contain directed and bidirected arrows, and contain no directed cycles. DAGs with latent variables imply independence constraints in the distribution resulting from a 'fixing' operation, in which a joint distribution is divided by a conditional. This operation generalizes marginalizing and conditioning. Some of these constraints correspond to identifiable 'dormant' independence constraints, with the well known 'Verma constraint' as one example. Recently, models defined by a set of the constraints arising after fixing from a DAG with latents, were characterized via a recursive factorization and a nested Markov property. In addition, a parameterization was given in the discrete case. In this paper we use this parameterization to describe a parameter fitting algorithm, and a search and score structure learning algorithm for these nested Markov models. We apply our algorithms to a variety of datasets.

Peña, Jose M., Bendtsen, Marcus

We introduce a new family of graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. We show that these models are suitable for representing causal models with additive error terms. We provide a set of sufficient graphical criteria for the identification of arbitrary causal effects when the new models contain directed and undirected edges but no bidirected edge. We also provide a necessary and sufficient graphical criterion for the identification of the causal effect of a single variable on the rest of the variables. Moreover, we develop an exact algorithm for learning the new models from observational and interventional data via answer set programming. Finally, we introduce gated models for causal effect identification, a new family of graphical models that exploits context specific independences to identify additional causal effects.

In this paper we discuss four problems regarding Markov equivalences for subclasses of loopless mixed graphs. We classify these four problems as finding conditions for internal Markov equivalence, which is Markov equivalence within a subclass, for external Markov equivalence, which is Markov equivalence between subclasses, for representational Markov equivalence, which is the possibility of a graph from a subclass being Markov equivalent to a graph from another subclass, and finding algorithms to generate a graph from a certain subclass that is Markov equivalent to a given graph. We particularly focus on the class of maximal ancestral graphs and its subclasses, namely regression graphs, bidirected graphs, undirected graphs, and directed acyclic graphs, and present novel results for representational Markov equivalence and algorithms.