Collaborating Authors

Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities Machine Learning

One of the major hurdles preventing the full exploitation of information from online communities is the widespread concern regarding the quality and credibility of user-contributed content. Prior works in this domain operate on a static snapshot of the community, making strong assumptions about the structure of the data (e.g., relational tables), or consider only shallow features for text classification. To address the above limitations, we propose probabilistic graphical models that can leverage the joint interplay between multiple factors in online communities --- like user interactions, community dynamics, and textual content --- to automatically assess the credibility of user-contributed online content, and the expertise of users and their evolution with user-interpretable explanation. To this end, we devise new models based on Conditional Random Fields for different settings like incorporating partial expert knowledge for semi-supervised learning, and handling discrete labels as well as numeric ratings for fine-grained analysis. This enables applications such as extracting reliable side-effects of drugs from user-contributed posts in healthforums, and identifying credible content in news communities. Online communities are dynamic, as users join and leave, adapt to evolving trends, and mature over time. To capture this dynamics, we propose generative models based on Hidden Markov Model, Latent Dirichlet Allocation, and Brownian Motion to trace the continuous evolution of user expertise and their language model over time. This allows us to identify expert users and credible content jointly over time, improving state-of-the-art recommender systems by explicitly considering the maturity of users. This also enables applications such as identifying helpful product reviews, and detecting fake and anomalous reviews with limited information.

Cognitive Science in the era of Artificial Intelligence: A roadmap for reverse-engineering the infant language-learner Artificial Intelligence

During their first years of life, infants learn the language(s) of their environment at an amazing speed despite large cross cultural variations in amount and complexity of the available language input. Understanding this simple fact still escapes current cognitive and linguistic theories. Recently, spectacular progress in the engineering science, notably, machine learning and wearable technology, offer the promise of revolutionizing the study of cognitive development. Machine learning offers powerful learning algorithms that can achieve human-like performance on many linguistic tasks. Wearable sensors can capture vast amounts of data, which enable the reconstruction of the sensory experience of infants in their natural environment. The project of 'reverse engineering' language development, i.e., of building an effective system that mimics infant's achievements appears therefore to be within reach. Here, we analyze the conditions under which such a project can contribute to our scientific understanding of early language development. We argue that instead of defining a sub-problem or simplifying the data, computational models should address the full complexity of the learning situation, and take as input the raw sensory signals available to infants. This implies that (1) accessible but privacy-preserving repositories of home data be setup and widely shared, and (2) models be evaluated at different linguistic levels through a benchmark of psycholinguist tests that can be passed by machines and humans alike, (3) linguistically and psychologically plausible learning architectures be scaled up to real data using probabilistic/optimization principles from machine learning. We discuss the feasibility of this approach and present preliminary results.

Computational Register Analysis and Synthesis Artificial Intelligence

The study of register in computational language research has historically been divided into register analysis, seeking to determine the registerial character of a text or corpus, and register synthesis, seeking to generate a text in a desired register. This article surveys the different approaches to these disparate tasks. Register synthesis has tended to use more theoretically articulated notions of register and genre than analysis work, which often seeks to categorize on the basis of intuitive and somewhat incoherent notions of prelabeled 'text types'. I argue that an integration of computational register analysis and synthesis will benefit register studies as a whole, by enabling a new large-scale research program in register studies. It will enable comprehensive global mapping of functional language varieties in multiple languages, including the relationships between them. Furthermore, computational methods together with high coverage systematically collected and analyzed data will thus enable rigorous empirical validation and refinement of different theories of register, which will have also implications for our understanding of linguistic variation in general.

A Survey of Available Corpora for Building Data-Driven Dialogue Systems Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.

Survey on Evaluation Methods for Dialogue Systems Artificial Intelligence

In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class.