Latent Bayesian melding for integrating individual and population models

Neural Information Processing Systems

In many statistical problems, a more coarse-grained model may be suitable for population-level behaviour, whereas a more detailed model is appropriate for accurate modelling of individual behaviour. This raises the question of how to integrate both types of models. Methods such as posterior regularization follow the idea of generalized moment matching, in that they allow matchingexpectations between two models, but sometimes both models are most conveniently expressed as latent variable models. We propose latent Bayesian melding, which is motivated by averaging the distributions over populations statistics of both the individual-level and the population-level models under a logarithmic opinion pool framework. In a case study on electricity disaggregation, which is a type of single-channel blind source separation problem, we show that latent Bayesian melding leads to significantly more accurate predictions than an approach based solely on generalized moment matching.


Latent Bayesian melding for integrating individual and population models

arXiv.org Machine Learning

In many statistical problems, a more coarse-grained model may be suitable for population-level behaviour, whereas a more detailed model is appropriate for accurate modelling of individual behaviour. This raises the question of how to integrate both types of models. Methods such as posterior regularization follow the idea of generalized moment matching, in that they allow matching expectations between two models, but sometimes both models are most conveniently expressed as latent variable models. We propose latent Bayesian melding, which is motivated by averaging the distributions over populations statistics of both the individual-level and the population-level models under a logarithmic opinion pool framework. In a case study on electricity disaggregation, which is a type of single-channel blind source separation problem, we show that latent Bayesian melding leads to significantly more accurate predictions than an approach based solely on generalized moment matching.


Multi-level hypothesis testing for populations of heterogeneous networks

arXiv.org Machine Learning

In this work, we consider hypothesis testing and anomaly detection on datasets where each observation is a weighted network. Examples of such data include brain connectivity networks from fMRI flow data, or word co-occurrence counts for populations of individuals. Current approaches to hypothesis testing for weighted networks typically requires thresholding the edge-weights, to transform the data to binary networks. This results in a loss of information, and outcomes are sensitivity to choice of threshold levels. Our work avoids this, and we consider weighted-graph observations in two situations, 1) where each graph belongs to one of two populations, and 2) where entities belong to one of two populations, with each entity possessing multiple graphs (indexed e.g. by time). Specifically, we propose a hierarchical Bayesian hypothesis testing framework that models each population with a mixture of latent space models for weighted networks, and then tests populations of networks for differences in distribution over components. Our framework is capable of population-level, entity-specific, as well as edge-specific hypothesis testing. We apply it to synthetic data and three real-world datasets: two social media datasets involving word co-occurrences from discussions on Twitter of the political unrest in Brazil, and on Instagram concerning Attention Deficit Hyperactivity Disorder (ADHD) and depression drugs, and one medical dataset involving fMRI brain-scans of human subjects. The results show that our proposed method has lower Type I error and higher statistical power compared to alternatives that need to threshold the edge weights. Moreover, they show our proposed method is better suited to deal with highly heterogeneous datasets.


Spatio-temporal Representations of Uncertainty in Spiking Neural Networks

Neural Information Processing Systems

It has been long argued that, because of inherent ambiguity and noise, the brain needs to represent uncertainty in the form of probability distributions. The neural encoding of such distributions remains however highly controversial. Here we present a novel circuit model for representing multidimensional real-valued distributions using a spike based spatio-temporal code. Our model combines the computational advantages of the currently competing models for probabilistic codes and exhibits realistic neural responses along a variety of classic measures. Furthermore, the model highlights the challenges associated with interpreting neural activity in relation to behavioral uncertainty and points to alternative population-level approaches for the experimental validation of distributed representations.


ggeffects 0.8.0 now on CRAN: marginal effects for regression models #rstats

#artificialintelligence

I'm happy to announce that version 0.8.0 of my ggeffects-package is on CRAN now. The update has fixed some bugs from the previous version and comes along with many new features or improvements. One major part that was addressed in the latest version are fixed and improvements for mixed models, especially zero-inflated mixed models (fitted with the glmmTMB-package). In this post, I want to demonstrate the different options to calculate and visualize marginal effects from mixed models. Basically, the type of predictions, i.e. whether to account for the uncertainty of random effects or not, can be set with the type-argument.