Collaborating Authors

ClassiNet -- Predicting Missing Features for Short-Text Classification Artificial Intelligence

The fundamental problem in short-text classification is \emph{feature sparseness} -- the lack of feature overlap between a trained model and a test instance to be classified. We propose \emph{ClassiNet} -- a network of classifiers trained for predicting missing features in a given instance, to overcome the feature sparseness problem. Using a set of unlabeled training instances, we first learn binary classifiers as feature predictors for predicting whether a particular feature occurs in a given instance. Next, each feature predictor is represented as a vertex $v_i$ in the ClassiNet where a one-to-one correspondence exists between feature predictors and vertices. The weight of the directed edge $e_{ij}$ connecting a vertex $v_i$ to a vertex $v_j$ represents the conditional probability that given $v_i$ exists in an instance, $v_j$ also exists in the same instance. We show that ClassiNets generalize word co-occurrence graphs by considering implicit co-occurrences between features. We extract numerous features from the trained ClassiNet to overcome feature sparseness. In particular, for a given instance $\vec{x}$, we find similar features from ClassiNet that did not appear in $\vec{x}$, and append those features in the representation of $\vec{x}$. Moreover, we propose a method based on graph propagation to find features that are indirectly related to a given short-text. We evaluate ClassiNets on several benchmark datasets for short-text classification. Our experimental results show that by using ClassiNet, we can statistically significantly improve the accuracy in short-text classification tasks, without having to use any external resources such as thesauri for finding related features.

An Approach for Time-aware Domain-based Social Influence Prediction Artificial Intelligence

Online Social Networks(OSNs) have established virtual platforms enabling people to express their opinions, interests and thoughts in a variety of contexts and domains, allowing legitimate users as well as spammers and other untrustworthy users to publish and spread their content. Hence, the concept of social trust has attracted the attention of information processors/data scientists and information consumers/business firms. One of the main reasons for acquiring the value of Social Big Data (SBD) is to provide frameworks and methodologies using which the credibility of OSNs users can be evaluated. These approaches should be scalable to accommodate large-scale social data. Hence, there is a need for well comprehending of social trust to improve and expand the analysis process and inferring the credibility of SBD. Given the exposed environment's settings and fewer limitations related to OSNs, the medium allows legitimate and genuine users as well as spammers and other low trustworthy users to publish and spread their content. Hence, this paper presents an approach incorporates semantic analysis and machine learning modules to measure and predict users' trustworthiness in numerous domains in different time periods. The evaluation of the conducted experiment validates the applicability of the incorporated machine learning techniques to predict highly trustworthy domain-based users.

Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities Machine Learning

One of the major hurdles preventing the full exploitation of information from online communities is the widespread concern regarding the quality and credibility of user-contributed content. Prior works in this domain operate on a static snapshot of the community, making strong assumptions about the structure of the data (e.g., relational tables), or consider only shallow features for text classification. To address the above limitations, we propose probabilistic graphical models that can leverage the joint interplay between multiple factors in online communities --- like user interactions, community dynamics, and textual content --- to automatically assess the credibility of user-contributed online content, and the expertise of users and their evolution with user-interpretable explanation. To this end, we devise new models based on Conditional Random Fields for different settings like incorporating partial expert knowledge for semi-supervised learning, and handling discrete labels as well as numeric ratings for fine-grained analysis. This enables applications such as extracting reliable side-effects of drugs from user-contributed posts in healthforums, and identifying credible content in news communities. Online communities are dynamic, as users join and leave, adapt to evolving trends, and mature over time. To capture this dynamics, we propose generative models based on Hidden Markov Model, Latent Dirichlet Allocation, and Brownian Motion to trace the continuous evolution of user expertise and their language model over time. This allows us to identify expert users and credible content jointly over time, improving state-of-the-art recommender systems by explicitly considering the maturity of users. This also enables applications such as identifying helpful product reviews, and detecting fake and anomalous reviews with limited information.

Comparative Experiments on Sentiment Classification for Online Product Reviews

AAAI Conferences

Evaluating text fragments for positive and negative subjective expressions and their strength can be important in applications such as single-or multi-document summarization, document ranking, data mining, etc.

Mining Meaning from Wikipedia Artificial Intelligence

Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts and relations that is being applied to a host of tasks. This article provides a comprehensive description of this work. It focuses on research that extracts and makes use of the concepts, relations, facts and descriptions found in Wikipedia, and organizes the work into four broad categories: applying Wikipedia to natural language processing; using it to facilitate information retrieval and information extraction; and as a resource for ontology building. The article addresses how Wikipedia is being used as is, how it is being improved and adapted, and how it is being combined with other structures to create entirely new resources. We identify the research groups and individuals involved, and how their work has developed in the last few years. We provide a comprehensive list of the open-source software they have produced.