Cropper, Andrew (Imperial College London) | Muggleton, Stephen H. (Imperial College London)

Most logic-based machine learning algorithms rely on an Occamist bias where textual complexity of hypotheses is minimised. Within Inductive Logic Programming (ILP), this approach fails to distinguish between the efficiencies of hypothesised programs, such as quick sort (O(n log n)) and bubble sort (O(n 2 )). This paper addresses this issue by considering techniques to minimise both the textual complexity and resource complexity of hypothesised robot strategies. We develop a general framework for the problem of minimising resource complexity and show that on two robot strategy problems, 1) Postman 2) Sorter (recursively sort letters for delivery), the theoretical resource complexities of optimal strategies vary depending on whether objects can be composed within a strategy. The approach considered is an extension of Meta-Interpretive Learning (MIL), a recently developed paradigm in ILP which supports predicate invention and the learning of recursive logic programs. We introduce a new MIL implementation, Metagol O , and prove its convergence, with increasing numbers of randomly chosen examples to optimal strategies of this kind. Our experiments show that Metagol O learns theoretically optimal robot sorting strategies, which is in agreement with the theoretical predictions showing a clear divergence in resource requirements as the number of objects grows. To the authors’ knowledge this paper is the first demonstration of a learning algorithm able to learn optimal resource complexity robot strategies and algorithms for sorting lists.

Cropper, Andrew (Imperial College London)

Most logic-based machine learning algorithms rely on an Occamist bias where textual simplicity of hypotheses is optimised. This approach, however, fails to distinguish between the efficiencies of hypothesised programs, such as quick sort (O(n log n)) and bubble sort (O(n^2)). We address this issue by considering techniques to minimise both the resource complexity and textual complexity of hypothesised programs. We describe an algorithm proven to learn optimal resource complexity robot strategies, and we propose future work to generalise this approach to a broader class of logic programs.

Cozman, Fabio Gagliardi, Mauá, Denis Deratani

We examine the meaning and the complexity of probabilistic logic programs that consist of a set of rules and a set of independent probabilistic facts (that is, programs based on Sato's distribution semantics). We focus on two semantics, respectively based on stable and on well-founded models. We show that the semantics based on stable models (referred to as the "credal semantics") produces sets of probability measures that dominate infinitely monotone Choquet capacities; we describe several useful consequences of this result. We then examine the complexity of inference with probabilistic logic programs. We distinguish between the complexity of inference when a probabilistic program and a query are given (the inferential complexity), and the complexity of inference when the probabilistic program is fixed and the query is given (the query complexity, akin to data complexity as used in database theory). We obtain results on the inferential and query complexity for acyclic, stratified, and normal propositional and relational programs; complexity reaches various levels of the counting hierarchy and even exponential levels.

Borgwardt, Stefan (Technische Universität Dresden) | Distel, Felix (Technische Universität Dresden) | Peñaloza, Rafael (Technische Universität Dresden)

In the last few years, there has been a large effort for analyzing the computational properties of reasoning in fuzzy description logics. This has led to a number of papers studying the complexity of these logics, depending on the chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy description logics w.r.t.

Bozzelli, Laura (Technical University of Madrid) | Ditmarsch, Hans van (LORIA, CNRS / University of Lorraine) | Pinchinat, Sophie (IRISA/INRIA, University of Rennes)

We investigate the complexity of satisfiability for one-agent refinement modal logic (RML), an extension of basic modal logic (ML) obtained by adding refinement quantifiers on structures. RML is known to have the same expressiveness as ML, but the translation of RML into ML is of non-elementary complexity, and RML is at least doubly exponentially more succinct than ML. In this paper we show that RML-satisfiability is only' singly exponentially harder than ML-satisfiability, the latter being a well-known PSPACE-complete problem.