Goto

Collaborating Authors

Graph Kernels: A Survey

arXiv.org Machine Learning

Graph kernels have attracted a lot of attention during the last decade, and have evolved into a rapidly developing branch of learning on structured data. During the past 20 years, the considerable research activity that occurred in the field resulted in the development of dozens of graph kernels, each focusing on specific structural properties of graphs. Graph kernels have proven successful in a wide range of domains, ranging from social networks to bioinformatics. The goal of this survey is to provide a unifying view of the literature on graph kernels. In particular, we present a comprehensive overview of a wide range of graph kernels. Furthermore, we perform an experimental evaluation of several of those kernels on publicly available datasets, and provide a comparative study. Finally, we discuss key applications of graph kernels, and outline some challenges that remain to be addressed.


Graph Kernels: A Survey

Journal of Artificial Intelligence Research

Graph kernels have attracted a lot of attention during the last decade, and have evolved into a rapidly developing branch of learning on structured data. During the past 20 years, the considerable research activity that occurred in the field resulted in the development of dozens of graph kernels, each focusing on specific structural properties of graphs. Graph kernels have proven successful in a wide range of domains, ranging from social networks to bioinformatics. The goal of this survey is to provide a unifying view of the literature on graph kernels. In particular, we present a comprehensive overview of a wide range of graph kernels. Furthermore, we perform an experimental evaluation of several of those kernels on publicly available datasets, and provide a comparative study. Finally, we discuss key applications of graph kernels, and outline some challenges that remain to be addressed.


A Survey on Graph Kernels

arXiv.org Machine Learning

Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification.


Graph Invariant Kernels

AAAI Conferences

We introduce a novel kernel that upgrades the Weisfeiler-Lehman and other graph kernels to effectively exploit high-dimensional and continuous vertex attributes. Graphs are first decomposed into subgraphs. Vertices of the subgraphs are then compared by a kernel that combines the similarity of their labels and the similarity of their structural role, using a suitable vertex invariant. By changing this invariant we obtain a family of graph kernels which includes generalizations of Weisfeiler-Lehman, NSPDK, and propagation kernels. We demonstrate empirically that these kernels obtain state-of-the-art results on relational data sets.