Goto

Collaborating Authors

Learning Semantic Similarity

Neural Information Processing Systems

The standard representation of text documents as bags of words suffers from well known limitations, mostly due to its inability to exploit semantic similarity between terms. Attempts to incorporate some notion of term similarity include latent semantic indexing [8], the use of semantic networks [9], and probabilistic methods [5]. In this paper we propose two methods for inferring such similarity from a corpus. The first one defines word-similarity based on document-similarity and viceversa, giving rise to a system of equations whose equilibrium point we use to obtain a semantic similarity measure. The second method models semantic relations by means of a diffusion process on a graph defined by lexicon and co-occurrence information.


Learning Semantic Similarity

Neural Information Processing Systems

The standard representation of text documents as bags of words suffers from well known limitations, mostly due to its inability to exploit semantic similarity between terms. Attempts to incorporate some notion of term similarity include latent semantic indexing [8], the use of semantic networks [9], and probabilistic methods [5]. In this paper we propose two methods for inferring such similarity from a corpus. The first one defines word-similarity based on document-similarity and viceversa, giving rise to a system of equations whose equilibrium point we use to obtain a semantic similarity measure. The second method models semantic relations by means of a diffusion process on a graph defined by lexicon and co-occurrence information.


Learning Semantic Similarity

Neural Information Processing Systems

The standard representation of text documents as bags of words suffers from well known limitations, mostly due to its inability to exploit semantic similarity between terms. Attempts to incorporate somenotion of term similarity include latent semantic indexing [8], the use of semantic networks [9], and probabilistic methods [5]. In this paper we propose two methods for inferring such similarity froma corpus. The first one defines word-similarity based on document-similarity and viceversa, giving rise to a system of equations whose equilibrium point we use to obtain a semantic similarity measure. The second method models semantic relations by means of a diffusion process on a graph defined by lexicon and co-occurrence information.


Clustering with Similarity Preserving

arXiv.org Machine Learning

Graph-based clustering has shown promising performance in many tasks. A key step of graph-based approach is the similarity graph construction. In general, learning graph in kernel space can enhance clustering accuracy due to the incorporation of nonlinearity. However, most existing kernel-based graph learning mechanisms is not similarity-preserving, hence leads to sub-optimal performance. To overcome this drawback, we propose a more discriminative graph learning method which can preserve the pairwise similarities between samples in an adaptive manner for the first time. Specifically, we require the learned graph be close to a kernel matrix, which serves as a measure of similarity in raw data. Moreover, the structure is adaptively tuned so that the number of connected components of the graph is exactly equal to the number of clusters. Finally, our method unifies clustering and graph learning which can directly obtain cluster indicators from the graph itself without performing further clustering step. The effectiveness of this approach is examined on both single and multiple kernel learning scenarios in several datasets.


Graph Neural Networks with Composite Kernels

arXiv.org Machine Learning

Learning on graph structured data has drawn increasing interest in recent years. Frameworks like Graph Convolutional Networks (GCNs) have demonstrated their ability to capture structural information and obtain good performance in various tasks. In these frameworks, node aggregation schemes are typically used to capture structural information: a node's feature vector is recursively computed by aggregating features of its neighboring nodes. However, most of aggregation schemes treat all connections in a graph equally, ignoring node feature similarities. In this paper, we re-interpret node aggregation from the perspective of kernel weighting, and present a framework to consider feature similarity in an aggregation scheme. Specifically, we show that normalized adjacency matrix is equivalent to a neighbor-based kernel matrix in a Krein Space. We then propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space. We further show how the proposed method can be extended to Graph Attention Network (GAT). Experimental results demonstrate better performance of our proposed framework in several real-world applications.