Collaborating Authors

Analogy and Relational Representations in the Companion Cognitive Architecture

AI Magazine

This includes the physical world, where qualitative representations have a long track record of providing human-level reasoning and performance (Forbus 2014), but also in social reasoning (for example, degrees of blame [Tomai and Forbus 2007]). Qualitative representations carve up continuous phenomena into symbolic descriptions that serve as a bridge between perception and cognition, facilitate everyday reasoning and communication, and help ground expert reasoning. We close with some lessons (Forbus, Klenk, and Hinrichs 2009) is on higher-order learned and open problems. In Newell's (1990) timescale proposed that analogy involves the construction of decomposition of cognitive phenomena, conceptual mappings between two structured, relational representations. Thus to the other, based on the correspondences), and a we approximate subsystems whose operations occur score indicating the overall quality of the match. For which one is trying to reason about, and hence inferences example, in Companions constraint checking and are made from base to target by default.

Extending Analogical Generalization with Near-Misses

AAAI Conferences

Concept learning is a central problem for cognitive systems. Generalization techniques can help organize examples by their commonalities, but comparisons with non-examples, near-misses, can provide discrimination. Early work on near-misses required hand-selected examples by a teacher who understood the learner’s internal representations. This paper introduces Analogical Learning by Integrating Generalization and Near-misses (ALIGN) and describes three key advances. First, domain-general cognitive models of analogical processes are used to handle a wider range of examples. Second, ALIGN’s analogical generalization process constructs multiple probabilistic representations per concept via clustering, and hence can learn disjunctive concepts. Finally, ALIGN uses unsupervised analogical retrieval to find its own near-miss examples. We show that ALIGN out-performs analogical generalization on two perceptual data sets: (1) hand-drawn sketches; and (2) geospatial concepts from strategy-game maps.

Learning From Unannotated QA Pairs to Analogically Disambiguate and Answer Questions

AAAI Conferences

Creating systems that can learn to answer natural language questions has been a longstanding challenge for artificial intelligence. Most prior approaches focused on producing a specialized language system for a particular domain and dataset, and they required training on a large corpus manually annotated with logical forms. This paper introduces an analogy-based approach that instead adapts an existing general purpose semantic parser to answer questions in a novel domain by jointly learning disambiguation heuristics and query construction templates from purely textual question-answer pairs. Our technique uses possible semantic interpretations of the natural language questions and answers to constrain a query-generation procedure, producing cases during training that are subsequently reused via analogical retrieval and composed to answer test questions. Bootstrapping an existing semantic parser in this way significantly reduces the number of training examples needed to accurately answer questions. We demonstrate the efficacy of our technique using the Geoquery corpus, on which it approaches state of the art performance using 10-fold cross validation, shows little decrease in performance with 2-folds, and achieves above 50% accuracy with as few as 10 examples.

Learning Plausible Inferences from Semantic Web Knowledge by Combining Analogical Generalization with Structured Logistic Regression

AAAI Conferences

Fast and efficient learning over large bodies of commonsense knowledge is a key requirement for cognitive systems. Semantic web knowledge bases provide an important new resource of ground facts from which plausible inferences can be learned. This paper applies structured logistic regression with analogical generalization (SLogAn) to make use of structural as well as statistical information to achieve rapid and robust learning. SLogAn achieves state-of-the-art performance in a standard triplet classification task on two data sets and, in addition, can provide understandable explanations for its answers.