Goto

Collaborating Authors

A Fractal Analogy Approach to the Raven's Test of Intelligence

AAAI Conferences

We present a fractal technique for addressing geometric analogy problems from the Raven's Standard Progressive Matrices test of general intelligence. In this method, an image is represented fractally, capturing its inherent self-similarity. We apply these fractal representations to problems from the Raven's test, and show how these representations afford a new method for solving complex geometric analogy problems. We present results using the fractal algorithm on all 60 problems from the Standard Progressive Matrices version of the Raven's test.


Confident Reasoning on Raven's Progressive Matrices Tests

AAAI Conferences

We report a novel approach to addressing the Raven’s Progressive Matrices (RPM) tests, one based upon purely visual representations. Our technique introduces the calculation of confidence in an answer and the automatic adjustment of level of resolution if that confidence is insufficient. We first describe the nature of the visual analogies found on the RPM. We then exhibit our algorithm and work through a detailed example. Finally, we present the performance of our algorithm on the four major variants of the RPM tests, illustrating the impact of confidence. This is the first such account of any computational model against the entirety of the Raven’s.


Addressing the Raven’s Progressive Matrices Test of “General” Intelligence

AAAI Conferences

The Raven's Progressive Matrices (RPM) test is a commonly used test of general human intelligence. The RPM is somewhat unique as a general intelligence test in that it focuses on visual problem solving, and in particular, on visual similarity and analogy. We are developing a small set of methods for problem solving in the RPM which use propositional, imagistic, and multimodal representations, respectively, to investigate how different representations can contribute to visual problem solving and how the effects of their use might emerge in behavior.


A Visual Analogy Approach to Source Case Retrieval in Robot Learning from Observation

AAAI Conferences

Learning by observation is an important goal in developing complete intelligent robots that learn interactively. We present a visual analogy approach toward an integrated, intelligent system capable of learning skills from observation. In particular, we focus on the task of retrieving a previously acquired case similar to a new, observed skill. We describe three approaches to case retrieval: feature matching, feature transformation, and fractal analogy. SIFT features and fractal encoding were used to represent the visual state prior to the skill demonstration, the final state after the skill has been executed, and the visual transformation between the two states. We discovered that the three methods (feature matching, feature transformation, and fractal analogy) are useful for retrieval of similar skill cases under different conditions pertaining to the observed skills.


Symmetry as an Organizing Principle for Geometric Intelligence

arXiv.org Artificial Intelligence

The exploration of geometrical patterns stimulates imagination and encourages abstract reasoning which is a distinctive feature of human intelligence. In cognitive science, Gestalt principles such as symmetry have often explained significant aspects of human perception. We present a computational technique for building artificial intelligence (AI) agents that use symmetry as the organizing principle for addressing Dehaene's test of geometric intelligence \cite{dehaene2006core}. The performance of our model is on par with extant AI models of problem solving on the Dehaene's test and seems correlated with some elements of human behavior on the same test.