Goto

Collaborating Authors

Adaptive Auxiliary Task Weighting for Reinforcement Learning

Neural Information Processing Systems

Reinforcement learning is known to be sample inefficient, preventing its application to many real-world problems, especially with high dimensional observations like images. Transferring knowledge from other auxiliary tasks is a powerful tool for improving the learning efficiency. However, the usage of auxiliary tasks has been limited so far due to the difficulty in selecting and combining different auxiliary tasks. In this work, we propose a principled online learning algorithm that dynamically combines different auxiliary tasks to speed up training for reinforcement learning. Our method is based on the idea that auxiliary tasks should provide gradient directions that, in the long term, help to decrease the loss of the main task.


Self-Supervised Generalisation with Meta Auxiliary Learning

Neural Information Processing Systems

Learning with auxiliary tasks can improve the ability of a primary task to generalise. However, this comes at the cost of manually labelling auxiliary data. We propose a new method which automatically learns appropriate labels for an auxiliary task, such that any supervised learning task can be improved without requiring access to any further data. The approach is to train two neural networks: a label-generation network to predict the auxiliary labels, and a multi-task network to train the primary task alongside the auxiliary task. The loss for the label-generation network incorporates the loss of the multi-task network, and so this interaction between the two networks can be seen as a form of meta learning with a double gradient.


Transfer Learning for High-dimensional Linear Regression: Prediction, Estimation, and Minimax Optimality

arXiv.org Machine Learning

This paper considers the estimation and prediction of a high-dimensional linear regression in the setting of transfer learning, using samples from the target model as well as auxiliary samples from different but possibly related regression models. When the set of "informative" auxiliary samples is known, an estimator and a predictor are proposed and their optimality is established. The optimal rates of convergence for prediction and estimation are faster than the corresponding rates without using the auxiliary samples. This implies that knowledge from the informative auxiliary samples can be transferred to improve the learning performance of the target problem. In the case that the set of informative auxiliary samples is unknown, we propose a data-driven procedure for transfer learning, called Trans-Lasso, and reveal its robustness to non-informative auxiliary samples and its efficiency in knowledge transfer. The proposed procedures are demonstrated in numerical studies and are applied to a dataset concerning the associations among gene expressions. It is shown that Trans-Lasso leads to improved performance in gene expression prediction in a target tissue by incorporating the data from multiple different tissues as auxiliary samples.


Woman Accused of Stealing From Hospital Auxiliary

U.S. News

Authorities say Creger wrote nearly $21,000 in checks to herself last year while she was treasurer of the Regional Health Services of Howard County Hospital Auxiliary. She told an investigator that she needed the money for medical bills and that she wanted to pay it back.


Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models

Neural Information Processing Systems

We introduce a novel sampling algorithm for Markov chain Monte Carlo-based Bayesian inference for factorial hidden Markov models. This algorithm is based on an auxiliary variable construction that restricts the model space allowing iterative exploration in polynomial time. The sampling approach overcomes limitations with common conditional Gibbs samplers that use asymmetric updates and become easily trapped in local modes. Instead, our method uses symmetric moves that allows joint updating of the latent sequences and improves mixing. We illustrate the application of the approach with simulated and a real data example.