Bandit Learning Through Biased Maximum Likelihood Estimation

arXiv.org Machine Learning

We propose BMLE, a new family of bandit algorithms, that are formulated in a general way based on the Biased Maximum Likelihood Estimation method originally appearing in the adaptive control literature. We design the cost-bias term to tackle the exploration and exploitation tradeoff for stochastic bandit problems. We provide an explicit closed form expression for the index of an arm for Bernoulli bandits, which is trivial to compute. We also provide a general recipe for extending the BMLE algorithm to other families of reward distributions. We prove that for Bernoulli bandits, the BMLE algorithm achieves a logarithmic finite-time regret bound and hence attains order-optimality. Through extensive simulations, we demonstrate that the proposed algorithms achieve regret performance comparable to the best of several state-of-the-art baseline methods, while having a significant computational advantage in comparison to other best performing methods. The generality of the proposed approach makes it possible to address more complex models, including general adaptive control of Markovian systems.



Thompson sampling with the online bootstrap

arXiv.org Machine Learning

Thompson sampling provides a solution to bandit problems in which new observations are allocated to arms with the posterior probability that an arm is optimal. While sometimes easy to implement and asymptotically optimal, Thompson sampling can be computationally demanding in large scale bandit problems, and its performance is dependent on the model fit to the observed data. We introduce bootstrap Thompson sampling (BTS), a heuristic method for solving bandit problems which modifies Thompson sampling by replacing the posterior distribution used in Thompson sampling by a bootstrap distribution. We first explain BTS and show that the performance of BTS is competitive to Thompson sampling in the well-studied Bernoulli bandit case. Subsequently, we detail why BTS using the online bootstrap is more scalable than regular Thompson sampling, and we show through simulation that BTS is more robust to a misspecified error distribution. BTS is an appealing modification of Thompson sampling, especially when samples from the posterior are otherwise not available or are costly.


Internet of Things and Bayesian Networks

@machinelearnbot

As big data becomes more of cliche with every passing day, do you feel Internet of Things is the next marketing buzzword to grapple our lives. So what exactly is Internet of Thing (IoT) and why are we going to hear more about it in the coming days. Internet of thing (IoT) today denotes advanced connectivity of devices,systems and services that goes beyond machine to machine communications and covers a wide variety of domains and applications specifically in the manufacturing and power, oil and gas utilities. An application in IoT can be an automobile that has built in sensors to alert the driver when the tyre pressure is low. Built-in sensors on equipment's present in the power plant which transmit real time data and thereby enable to better transmission planning,load balancing.