In this paper we investigate situation calculus action theories extended with ontologies, expressed as description logics TBoxes that act as state constraints. We show that this combination, while natural and desirable, is particularly problematic: it leads to undecidability of the simplest form of reasoning, namely satisfiability, even for the simplest kinds of description logics and the simplest kind of situation calculus action theories.
We investigate conjunctive query inseparability of description logic (DL) knowledge bases (KBs) with respect to a given signature, a fundamental problem for KB versioning, module extraction, forgetting and knowledge exchange. We study the data and combined complexity of deciding KB query inseparability for fragments of Horn-ALCHI, including the DLs underpinning OWL 2 QL and OWL 2 EL. While all of these DLs are P-complete for data complexity, the combined complexity ranges from P to EXPTIME and 2EXPTIME. We also resolve two major open problems for OWL 2 QL by showing that TBox query inseparability and the membership problem for universal UCQ-solutions in knowledge exchange are both EXPTIME-complete for combined complexity.
Botoeva, Elena (Free University of Bozen-Bolzano) | Kontchakov, Roman (Birkbeck, University of London) | Ryzhikov, Vladislav (Free University of Bozen-Bolzano) | Wolter, Frank (University of Liverpool) | Zakharyaschev, Michael (Birkbeck, University of London)
Deciding inseparability of description logic knowledge bases (KBs) with respect to conjunctive queries is fundamental for many KB engineering and maintenance tasks including versioning, module extraction, knowledge exchange and forgetting. We study the combined and data complexity of this inseparability problem for fragments of Horn-ALCHI, including the description logics underpinning OWL 2 QL and OWL 2 EL.
Botoeva, Elena, Konev, Boris, Lutz, Carsten, Ryzhikov, Vladislav, Wolter, Frank, Zakharyaschev, Michael
The question whether an ontology can safely be replaced by another, possibly simpler, one is fundamental for many ontology engineering and maintenance tasks. It underpins, for example, ontology versioning, ontology modularization, forgetting, and knowledge exchange. What safe replacement means depends on the intended application of the ontology. If, for example, it is used to query data, then the answers to any relevant ontology-mediated query should be the same over any relevant data set; if, in contrast, the ontology is used for conceptual reasoning, then the entailed subsumptions between concept expressions should coincide. This gives rise to different notions of ontology inseparability such as query inseparability and concept inseparability, which generalize corresponding notions of conservative extensions. We survey results on various notions of inseparability in the context of description logic ontologies, discussing their applications, useful model-theoretic characterizations, algorithms for determining whether two ontologies are inseparable (and, sometimes, for computing the difference between them if they are not), and the computational complexity of this problem.
In this thesis, I investigate a hybrid knowledge representation approach that combines classic knowledge representations, such as rules and ontologies, with other cognitively plausible representations, such as prototypes and exemplars. The resulting framework can combine the strengths of each approach of knowledge representation, avoiding their weaknesses. It can be used for developing knowledge-based systems that combine logic-based reasoning and similarity-based reasoning in problem-solving processes.