Collaborating Authors

Deep Anomaly Detection Using Geometric Transformations

Neural Information Processing Systems

We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a normal'' class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our algorithm improves state-of-the-art methods by a wide margin.

A Stupidly Easy Speed Detector


My family and I recently moved into a new house in the center of our little college town. We love it, but our new location also puts us next to a busy residential street. All too often passersby would tear through well above the posted 25 mph limit. It brought out my latent grumpy side.

ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for Time Series Machine Learning

Anomaly detection is an active research topic in many different fields such as intrusion detection, network monitoring, system health monitoring, IoT healthcare, etc. However, many existing anomaly detection approaches require either human intervention or domain knowledge and may suffer from high computation complexity, consequently hindering their applicability in real-world scenarios. Therefore, a lightweight and ready-to-go approach that is able to detect anomalies in real-time is highly sought-after. Such an approach could be easily and immediately applied to perform time series anomaly detection on any commodity machine. The approach could provide timely anomaly alerts and by that enable appropriate countermeasures to be undertaken as early as possible. With these goals in mind, this paper introduces ReRe, which is a Real-time Ready-to-go proactive Anomaly Detection algorithm for streaming time series. ReRe employs two lightweight Long Short-Term Memory (LSTM) models to predict and jointly determine whether or not an upcoming data point is anomalous based on short-term historical data points and two long-term self-adaptive thresholds. Experiments based on real-world time-series datasets demonstrate the good performance of ReRe in real-time anomaly detection without requiring human intervention or domain knowledge.

A closer look at time series anomaly detection Anodot


Simple enough to be embedded in text as a sparkline, but able to speak volumes about your business, time series data is the basic input of Anodot's automated anomaly detection system. This article begins our three-part series in which we take a closer look at the specific techniques Anodot uses to extract insights from your data.

Incorporating Feedback into Tree-based Anomaly Detection Machine Learning

Anomaly detectors are often used to produce a ranked list of statistical anomalies, which are examined by human analysts in order to extract the actual anomalies of interest. Unfortunately, in realworld applications, this process can be exceedingly difficult for the analyst since a large fraction of high-ranking anomalies are false positives and not interesting from the application perspective. In this paper, we aim to make the analyst's job easier by allowing for analyst feedback during the investigation process. Ideally, the feedback influences the ranking of the anomaly detector in a way that reduces the number of false positives that must be examined before discovering the anomalies of interest. In particular, we introduce a novel technique for incorporating simple binary feedback into tree-based anomaly detectors. We focus on the Isolation Forest algorithm as a representative tree-based anomaly detector, and show that we can significantly improve its performance by incorporating feedback, when compared with the baseline algorithm that does not incorporate feedback. Our technique is simple and scales well as the size of the data increases, which makes it suitable for interactive discovery of anomalies in large datasets.