We discuss the representation of knowledge and of belief from the viewpoint of decision theory. While the Bayesian approach enjoys general-purpose applicability and axiomatic foundations, it suffers from several drawbacks. In particular, it does not model the belief formation process, and does not relate beliefs to evidence. We survey alternative approaches, and focus on formal model of casebased prediction and case-based decisions. A formal model of belief and knowledge representation needs to address several questions. The most basic ones are: (i) how do we represent knowledge?

This paper reports on the findings of an ongoing project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers which experience abrupt, partial or full failure of component devices. The problem we address is: given a hybrid model of system behavior, a history of executed controller actions, and a history of observations, including an observation of behavior that is aberrant relative to the model of expected behavior, determine what fault occurred to have caused the aberrant behavior. Determining a diagnosis can be cast as a search problem to find the most likely model for the data. Unfortunately, the search space is extremely large. To reduce search space size and to identify an initial set of candidate diagnoses, we propose to exploit techniques originally applied to qualitative diagnosis of continuous systems. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

Berkes, Pietro, Wood, Frank, Pillow, Jonathan W.

The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that combines the observations that (1) marginal distributions over single-neuron spike counts are often approximately Poisson; and (2) joint distributions over the responses of multiple neurons are often strongly dependent. Here, we show that both marginal and joint properties of neural responses can be captured using Poisson copula models. Copulas are joint distributions that allow random variables with arbitrary marginals to be combined while incorporating arbitrary dependencies between them. Different copulas capture different kinds of dependencies, allowing for a richer and more detailed description of dependencies than traditional summary statistics, such as correlation coefficients. We explore a variety of Poisson copula models for joint neural response distributions, and derive an efficient maximum likelihood procedure for estimating them. We apply these models to neuronal data collected in and macaque motor cortex, and quantify the improvement in coding accuracy afforded by incorporating the dependency structure between pairs of neurons.

This list is intended to introduce some of the tools of Bayesian statistics and machine learning that can be useful to computational research in cognitive science. The first section mentions several useful general references, and the others provide supplementary readings on specific topics. If you would like to suggest some additions to the list, contact Tom Griffiths.

Dechter, Rina, Mateescu, Robert

The paper introduces mixed networks, a new framework for expressing and reasoning with probabilistic and deterministic information. The framework combines belief networks with constraint networks, defining the semantics and graphical representation. We also introduce the AND/OR search space for graphical models, and develop a new linear space search algorithm. This provides the basis for understanding the benefits of processing the constraint information separately, resulting in the pruning of the search space. When the constraint part is tractable or has a small number of solutions, using the mixed representation can be exponentially more effective than using pure belief networks which odel constraints as conditional probability tables.