Co-Training Based Bilingual Sentiment Lexicon Learning

AAAI Conferences

In this paper, we address the issue of bilingual sentiment lexicon learning(BSLL) which aims to automatically and simultaneously generate sentiment words for two languages. The underlying motivation is that sentiment information from two languages can perform iterative mutual-teaching in the learning procedure. We propose to develop two classifiers to determine the sentiment polarities of words under a co-training framework, which makes full use of the two-view sentiment information from the two languages. The word alignment derived from the parallel corpus is leveraged to design effective features and to bridge the learning of the two classifiers. The experimental results on English and Chinese languages show the effectiveness of our approach in BSLL.


Learning Latent Sentiment Scopes for Entity-Level Sentiment Analysis

AAAI Conferences

In this paper, we focus on the task of extracting named entities together with their associated sentiment information in a joint manner. Our key observation in such an entity-level sentiment analysis (a.k.a. targeted sentiment analysis) task is that there exists a sentiment scope within which each named entity is embedded, which largely decides the sentiment information associated with the entity. However, such sentiment scopes are typically not explicitly annotated in the data, and their lengths can be unbounded. Motivated by this, unlike traditional approaches that cast this problem as a simple sequence labeling task, we propose a novel approach that can explicitly model the latent sentiment scopes. Our experiments on the standard datasets demonstrate that our approach is able to achieve better results compared to existing approaches based on conventional conditional random fields (CRFs) and a more recent work based on neural networks.


Can Context Extraction replace Sentiment Analysis?

@machinelearnbot

Most of the systems on the market will clock anywhere around 55-65% for unseen data, even though they might be 85% accurate in their cross-validations. At this juncture, it's important to realize that sentiment analysis is critical for any system monitoring customer reviews or social media posts. Hardly had the business world caught up with a sentence level sentiment analysis, we are now moving to aspect level sentiment analysis - more directed & granular, adding to the complexity. The question is this - can we do something to augment our sentiment analysis? For the past few months, I have been using context and relationship extraction to augment sentiment analysis.


In the mood: the dynamics of collective sentiments on Twitter

arXiv.org Machine Learning

We study the relationship between the sentiment levels of Twitter users and the evolving network structure that the users created by @-mentioning each other. We use a large dataset of tweets to which we apply three sentiment scoring algorithms, including the open source SentiStrength program. Specifically we make three contributions. Firstly we find that people who have potentially the largest communication reach (according to a dynamic centrality measure) use sentiment differently than the average user: for example they use positive sentiment more often and negative sentiment less often. Secondly we find that when we follow structurally stable Twitter communities over a period of months, their sentiment levels are also stable, and sudden changes in community sentiment from one day to the next can in most cases be traced to external events affecting the community. Thirdly, based on our findings, we create and calibrate a simple agent-based model that is capable of reproducing measures of emotive response comparable to those obtained from our empirical dataset.