Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

On Human Robot Interaction using Multiple Modes Artificial Intelligence

Today robotics is a vibrant field of research and it has tremendous application potentials not only in the area of industrial environment, battle field, construction industry and deep sea exploration but also in the household domain as a humanoid social robot. To be accepted in the household, the robots must have a higher level of intelligence and they must be capable of interacting people socially around it who is not supposed to be robot specialist. All these come under the field of human robot interaction (HRI). Our hypothesis is- "It is possible to design a multimodal human robot interaction framework, to effectively communicate with Humanoid Robots". In order to establish the above hypothesis speech and gesture have been used as a mode of interaction and throughout the thesis we validate our hypothesis by theoretical design and experimental verifications.

A Review of Tracking, Prediction and Decision Making Methods for Autonomous Driving Machine Learning

The models are updated using a CNN, which ensures robustness to noise, scaling and minor variations of the targets' appearance. As with many other related approaches, an online implementation offloads most of the processing to an external server leaving the embedded device from the vehicle to carry out only minor and frequently-needed tasks. Since quick reactions of the system are crucial for proper and safe vehicle operation, performance and a rapid response of the underlying software is essential, which is why the online approach is popular in this field. Also in the context of ensuring robustness and stability, some authors apply fusion techniques to information extracted from CNN layers. It has been previously mentioned that important correlations can be drawn from deep and shallow layers which can be exploited together for identifying robust features in the data.

Autonomous Target Search with Multiple Coordinated UAVs

Journal of Artificial Intelligence Research

Search and tracking is the problem of locating a moving target and following it to its destination. In this work, we consider a scenario in which the target moves across a large geographical area by following a road network and the search is performed by a team of unmanned aerial vehicles (UA Vs). We formulate search and tracking as a combinatorial optimization problem and prove that the objective function is submodular. We exploit this property to devise a greedy algorithm. Although this algorithm does not offer strong theoretical guarantees because of the presence of temporal constraints that limit the feasibility of the solutions, it presents remarkably good performance, especially when several UA Vs are available for the mission. As the greedy algorithm suffers when resources are scarce, we investigate two alternative optimization techniques: Constraint Programming (CP) and AI planning. Both approaches struggle to cope with large problems, and so we strengthen them by leveraging the greedy algorithm. We use the greedy solution to warm start the CP model and to devise a domain-dependent heuristic for planning. Our extensive experimental evaluation studies the scalability of the different techniques and identifies the conditions under which one approach becomes preferable to the others.

A Hybrid Genetic Algorithm for the Traveling Salesman Problem with Drone Artificial Intelligence

This paper addresses the Traveling Salesman Problem with Drone (TSP-D), in which a truck and drone are used to deliver parcels to customers. The objective of this problem is to either minimize the total operational cost (min-cost TSP-D) or minimize the completion time for the truck and drone (min-time TSP-D). This problem has gained a lot of attention in the last few years since it is matched with the recent trends in a new delivery method among logistics companies. To solve the TSP-D, we propose a hybrid genetic search with dynamic population management and adaptive diversity control based on a split algorithm, problem-tailored crossover and local search operators, a new restore method to advance the convergence and an adaptive penalization mechanism to dynamically balance the search between feasible/infeasible solutions. The computational results show that the proposed algorithm outperforms existing methods in terms of solution quality and improves best known solutions found in the literature. Moreover, various analyses on the impacts of crossover choice and heuristic components have been conducted to analysis further their sensitivity to the performance of our method.