Learning From What You Don't Observe

arXiv.org Artificial Intelligence

The process of diagnosis involves learning about the state of a system from various observations of symptoms or findings about the system. Sophisticated Bayesian (and other) algorithms have been developed to revise and maintain beliefs about the system as observations are made. Nonetheless, diagnostic models have tended to ignore some common sense reasoning exploited by human diagnosticians; In particular, one can learn from which observations have not been made, in the spirit of conversational implicature. There are two concepts that we describe to extract information from the observations not made. First, some symptoms, if present, are more likely to be reported before others. Second, most human diagnosticians and expert systems are economical in their data-gathering, searching first where they are more likely to find symptoms present. Thus, there is a desirable bias toward reporting symptoms that are present. We develop a simple model for these concepts that can significantly improve diagnostic inference.


Generalized Dual Decomposition for Bounding Maximum Expected Utility of Influence Diagrams with Perfect Recall

AAAI Conferences

We introduce a generalized dual decomposition bound for computing the maximum expected utility of influence diagrams based on the dual decomposition method generalized to $L^p$ space.  The main goal is to devise an approximation scheme free from translations required by existing variational approaches while exploiting the local structure of sum of utility functions as well as the conditional independence of probability functions.  In this work, the generalized dual decomposition method is applied to the algebraic framework called valuation algebra for influence diagrams which handles probability and expected utility as a pair. The proposed approach allows a sequential decision problem to be decomposed as a collection of sub-decision problems of bounded complexity and the upper bound of maximum expected utility to be computed by combining the local expected utilities. Thus, it has a flexible control of space and time complexity for computing the bound.  In addition, the upper bounds can be further minimized by reparameterizing the utility functions. Since the global objective function for the minimization is nonconvex, we present a gradient-based local search algorithm in which the outer loop controls the randomization of the initial configurations and the inner loop tightens the upper-bound based on block coordinate descent with gradients perturbed by a random noise. The experimental evaluation demonstrates highlights of the proposed approach on finite horizon MDP/POMDP instances.


Plan Recognition in Stories and in Life

arXiv.org Artificial Intelligence

Plan recognition does not work the same way in stories and in "real life" (people tend to jump to conclusions more in stories). We present a theory of this, for the particular case of how objects in stories (or in life) influence plan recognition decisions. We provide a Bayesian network formalization of a simple first-order theory of plans, and show how a particular network parameter seems to govern the difference between "life-like" and "story-like" response. We then show why this parameter would be influenced (in the desired way) by a model of speaker (or author) topic selection which assumes that facts in stories are typically "relevant".


A Measure-Free Approach to Conditioning

arXiv.org Artificial Intelligence

In an earlier paper, a new theory of measurefree "conditional" objects was presented. In this paper, emphasis is placed upon the motivation of the theory. The central part of this motivation is established through an example involving a knowledge-based system. In order to evaluate combination of evidence for this system, using observed data, auxiliary at tribute and diagnosis variables, and inference rules connecting them, one must first choose an appropriate algebraic logic description pair (ALDP): a formal language or syntax followed by a compatible logic or semantic evaluation (or model). Three common choices- for this highly non-unique choice - are briefly discussed, the logics being Classical Logic, Fuzzy Logic, and Probability Logic. In all three,the key operator representing implication for the inference rules is interpreted as the often-used disjunction of a negation (b => a) = (b'v a), for any events a,b. However, another reasonable interpretation of the implication operator is through the familiar form of probabilistic conditioning. But, it can be shown - quite surprisingly - that the ALDP corresponding to Probability Logic cannot be used as a rigorous basis for this interpretation! To fill this gap, a new ALDP is constructed consisting of "conditional objects", extending ordinary Probability Logic, and compatible with the desired conditional probability interpretation of inference rules. It is shown also that this choice of ALDP leads to feasible computations for the combination of evidence evaluation in the example. In addition, a number of basic properties of conditional objects and the resulting Conditional Probability Logic are given, including a characterization property and a developed calculus of relations.