[Report] Instantaneous ion configurations in the K ion channel selectivity filter revealed by 2D IR spectroscopy

Science

Potassium channels are responsible for the selective permeation of K ions across cell membranes. K ions permeate in single file through the selectivity filter, a narrow pore lined by backbone carbonyls that compose four K binding sites. Here, we report on the two-dimensional infrared (2D IR) spectra of a semisynthetic KcsA channel with site-specific heavy (13C18O) isotope labels in the selectivity filter. The ultrafast time resolution of 2D IR spectroscopy provides an instantaneous snapshot of the multi-ion configurations and structural distributions that occur spontaneously in the filter. Two elongated features are resolved, revealing the statistical weighting of two structural conformations.


A pharmacological master key mechanism that unlocks the selectivity filter gate in K channels

Science

Potassium (K) channels have been evolutionarily tuned for activation by diverse biological stimuli, and pharmacological activation is thought to target these specific gating mechanisms. Here we report a class of negatively charged activators (NCAs) that bypass the specific mechanisms but act as master keys to open K channels gated at their selectivity filter (SF), including many two-pore domain K (K2P) channels, voltage-gated hERG (human ether-à-go-go–related gene) channels and calcium (Ca2)–activated big-conductance potassium (BK)–type channels. Functional analysis, x-ray crystallography, and molecular dynamics simulations revealed that the NCAs bind to similar sites below the SF, increase pore and SF K occupancy, and open the filter gate. These results uncover an unrecognized polypharmacology among K channel activators and highlight a filter gating machinery that is conserved across different families of K channels with implications for rational drug design.



Activation of methane to CH3 : A selective industrial route to methanesulfonic acid

Science

Direct methane functionalization to value-added products remains a challenge because of the propensity for overoxidation in many reaction environments. Sulfonation has emerged as an attractive approach for achieving the necessary selectivity. Here, we report a practical process for the production of methanesulfonic acid (MSA) from only two reactants: methane and sulfur trioxide. We have achieved 99% selectivity and yield of MSA. The electrophilic initiator based on a sulfonyl peroxide derivative is protonated under superacidic conditions, producing a highly electrophilic oxygen atom capable of activating a C–H bond of methane.


Extreme warming events in Earth's past spurred mass extinctions across the oceans

Daily Mail

Mass extinction events spanning two global warming periods in Earth's history wiped out huge amounts of ocean life and destroyed reef ecosystems, a new study warns. It's previously been suggested that the Late Triassic and Early Toarcian extinctions, both linked to massive volcanism and the resulting climate changes, simply intensified extinction rates that were already underway. But according to new research, this was not the case. An analysis of background extinction rates and those experienced during the two events suggests extinction patterns changed dramatically each time due to rising ocean temperatures, acidification, and oxygen-starved waters. It's previously been suggested that the Late Triassic and Early Toarcian extinctions, both linked to massive volcanism and the resulting climate changes, simply intensified extinction rates that were already underway.