In September 2018, I published a blog about my forthcoming book on The Mathematical Foundations of Data Science. The central question we address is: How can we bridge the gap between mathematics needed for Artificial Intelligence (Deep Learning and Machine learning) with that taught in high schools (up to ages 17/18)? In this post, we present a chapter from this book called "A Taxonomy of Machine Learning Models." The book is now available for an early bird discount released as chapters. If you are interested in getting early discounted copies, please contact ajit.jaokar at feynlabs.ai.

Janner, Michael, Fu, Justin, Zhang, Marvin, Levine, Sergey

Designing effective model-based reinforcement learning algorithms is difficult because the ease of data generation must be weighed against the bias of model-generated data. In this paper, we study the role of model usage in policy optimization both theoretically and empirically. We first formulate and analyze a model-based reinforcement learning algorithm with a guarantee of monotonic improvement at each step. In practice, this analysis is overly pessimistic and suggests that real off-policy data is always preferable to model-generated on-policy data, but we show that an empirical estimate of model generalization can be incorporated into such analysis to justify model usage. Motivated by this analysis, we then demonstrate that a simple procedure of using short model-generated rollouts branched from real data has the benefits of more complicated model-based algorithms without the usual pitfalls.

Deep learning models can take hours, days or even weeks to train. If the run is stopped unexpectedly, you can lose a lot of work. In this post you will discover how you can check-point your deep learning models during training in Python using the Keras library. How to Check-Point Deep Learning Models in Keras Photo by saragoldsmith, some rights reserved. Application checkpointing is a fault tolerance technique for long running processes.

SAS supports the creation of deep neural network models. Examples of these models include convolutional neural networks, recurrent neural networks, feedforward neural networks and autoencoder neural networks. Let's examine in more detail how SAS creates deep learning models using SAS Visual Data Mining and Machine Learning. SAS Visual Mining and Machine Learning takes advantage of SAS Cloud Analytic Services (CAS) to perform what are referred to as CAS actions. You use CAS actions to load data, transform data, compute statistics, perform analytics and create output.