Goto

Collaborating Authors


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Algorithmic Distortion of Informational Landscapes

arXiv.org Machine Learning

The possible impact of algorithmic recommendation on the autonomy and free choice of Internet users is being increasingly discussed, especially in terms of the rendering of information and the structuring of interactions. This paper aims at reviewing and framing this issue along a double dichotomy. The first one addresses the discrepancy between users' intentions and actions (1) under some algorithmic influence and (2) without it. The second one distinguishes algorithmic biases on (1) prior information rearrangement and (2) posterior information arrangement. In all cases, we focus on and differentiate situations where algorithms empirically appear to expand the cognitive and social horizon of users, from those where they seem to limit that horizon. We additionally suggest that these biases may not be properly appraised without taking into account the underlying social processes which algorithms are building upon.


42 Digital Marketing Trends You Can't Ignore in 2020

#artificialintelligence

This epic list article has been updated to include 20 more digital marketing trends to help you get ready for next year! At one time, artificial intelligence, data-driven marketing and voice search engine optimization (VSEO) were ambitious concepts bordering on the ridiculous. Today, these innovative digital marketing trends are among the top priorities for most business owners in 2020. And why wouldn't they be? After all, if your business has any intention of remaining competitive in today's online landscape, you must adapt to the rapidly evolving changes in digital marketing. "Each business is a victim of Digital Darwinism, the evolution of consumer behavior when society and technology evolve faster than the ability to exploit it. Digital Darwinism does not discriminate. Make no mistake: We live in a time when marketing technology moves fast and consumer interests and behaviors are hard to predict. Marketers can no longer stick their heads in the sand and hope that educated guesses ...


Fake News Detection with Deep Diffusive Network Model

arXiv.org Artificial Intelligence

In recent years, due to the booming development of online social networks, fake news for various commercial and political purposes has been appearing in large numbers and widespread in the online world. With deceptive words, online social network users can get infected by these online fake news easily, which has brought about tremendous effects on the offline society already. An important goal in improving the trustworthiness of information in online social networks is to identify the fake news timely. This paper aims at investigating the principles, methodologies and algorithms for detecting fake news articles, creators and subjects from online social networks and evaluating the corresponding performance. This paper addresses the challenges introduced by the unknown characteristics of fake news and diverse connections among news articles, creators and subjects. Based on a detailed data analysis, this paper introduces a novel automatic fake news credibility inference model, namely FakeDetector. Based on a set of explicit and latent features extracted from the textual information, FakeDetector builds a deep diffusive network model to learn the representations of news articles, creators and subjects simultaneously. Extensive experiments have been done on a real-world fake news dataset to compare FakeDetector with several state-of-the-art models, and the experimental results have demonstrated the effectiveness of the proposed model.