IsisWorld: An Open Source Commonsense Simulator for AI Researchers

AAAI Conferences

A metareasoning problem involves three parts: 1) a set of concrete problem domains; 2) reasoners to reason about the problems; and, 3) metareasoners to reason about the reasoners. We believe that the metareasoning community would benefit from agreeing on the first two problems. To support this kind of collaboration, we offer an open source 3D simulator containing everyday, commonsense problems that take place in kitchens. This paper presents several arguments for using a simulator to solve commonsense problems. The paper concludes by describing future work in simulator-based unified generative benchmarks for AI.


Formalizations of Commonsense Psychology

AI Magazine

The central challenge in commonsense knowledge representation research is to develop content theories that achieve a high degree of both competency and coverage. We describe a new methodology for constructing formal theories in commonsense knowledge domains that complements traditional knowledge representation approaches by first addressing issues of coverage. We show how a close examination of a very general task (strategic planning) leads to a catalog of the concepts and facts that must be encoded for general commonsense reasoning. These concepts are sorted into a manageable number of coherent domains, one of which is the representational area of commonsense human memory. We then elaborate on these concepts using textual corpus-analysis techniques, where the conceptual distinctions made in natural language are used to improve the definitions of the concepts that should be expressible in our formal theories. These representational areas are then analyzed using more traditional knowledge representation techniques, as demonstrated in this article by our treatment of commonsense human memory.


Beating Common Sense into Interactive Applications

AI Magazine

A long-standing dream of artificial intelligence has been to put commonsense knowledge into computers -- enabling machines to reason about everyday life. Some projects, such as Cyc, have begun to amass large collections of such knowledge. However, it is widely assumed that the use of common sense in interactive applications will remain impractical for years, until these collections can be considered sufficiently complete and commonsense reasoning sufficiently robust. Recently, at the Massachusetts Institute of Technology's Media Laboratory, we have had some success in applying commonsense knowledge in a number of intelligent interface agents, despite the admittedly spotty coverage and unreliable inference of today's commonsense knowledge systems. This article surveys several of these applications and reflects on interface design principles that enable successful use of commonsense knowledge.


Formalizations of Commonsense Psychology

AI Magazine

The central challenge in commonsense knowledge representation research is to develop content theories that achieve a high degree of both competency and coverage. We describe a new methodology for constructing formal theories in commonsense knowledge domains that complements traditional knowledge representation approaches by first addressing issues of coverage. These concepts are sorted into a manageable number of coherent domains, one of which is the representational area of commonsense human memory. These representational areas are then analyzed using more traditional knowledge representation techniques, as demonstrated in this article by our treatment of commonsense human memory.


Naive Physics Perplex

AI Magazine

The "Naive Physics Manifesto" of Pat Hayes (1978) proposes a large-scale project to develop a formal theory encompassing the entire knowledge of physics of naive reasoners, expressed in a declarative symbolic form. The theory is organized in clusters of closely interconnected concepts and axioms. More recent work on the representation of commonsense physical knowledge has followed a somewhat different methodology. The goal has been to develop a competence theory powerful enough to justify commonsense physical inferences, and the research is organized in microworlds, each microworld covering a small range of physical phenomena. In this article, I compare the advantages and disadvantages of the two approaches.