Towards a Cognitive Model of Crowd Behavior Based on Social Comparison Theory

AAAI Conferences

Models of crowd behavior facilitate analysis and prediction of human group behavior, where people are affected by each other's presence. Unfortunately, existing models leave many open challenges. In particular, psychology models often offer only qualitative description, while computer science models are often simplistic, and are not reusable from one simulated phenomenon to the next. We propose a novel model of crowd behavior, based on Festinger's Social Comparison Theory (SCT). We propose a concrete algorithmic framework for SCT, and evaluate its implementation in several crowd behavior scenarios. Results from task measures and human judges evaluation shows that the SCT model produces improved results compared to base models from the literature.

Implicit Coordination in Crowded Multi-Agent Navigation

AAAI Conferences

In crowded multi-agent navigation environments, the motion of the agents is significantly constrained by the motion of the nearby agents. This makes planning paths very difficult and leads to inefficient global motion. To address this problem, we propose a new distributed approach to coordinate the motions of agents in crowded environments. With our approach, agents take into account the velocities and goals of their neighbors and optimize their motion accordingly and in real-time. We experimentally validate our coordination approach in a variety of scenarios and show that its performance scales to scenarios with hundreds of agents.

Crowd Behavior Analysis: A Review where Physics meets Biology Artificial Intelligence

Although the traits emerged in a mass gathering are often non-deliberative, the act of mass impulse may lead to irre- vocable crowd disasters. The two-fold increase of carnage in crowd since the past two decades has spurred significant advances in the field of computer vision, towards effective and proactive crowd surveillance. Computer vision stud- ies related to crowd are observed to resonate with the understanding of the emergent behavior in physics (complex systems) and biology (animal swarm). These studies, which are inspired by biology and physics, share surprisingly common insights, and interesting contradictions. However, this aspect of discussion has not been fully explored. Therefore, this survey provides the readers with a review of the state-of-the-art methods in crowd behavior analysis from the physics and biologically inspired perspectives. We provide insights and comprehensive discussions for a broader understanding of the underlying prospect of blending physics and biology studies in computer vision.

Environment-Driven Social Force Model: Lévy Walk Pattern in Collective Behavior

AAAI Conferences

Animals in social foraging not only present the ordered and aggregated group movement but also the individual movement patterns of Lévy walks that are characterized as the power-law frequency distribution of flight lengths. The environment and the conspecific effects between group members are two fundamental inducements to the collective behavior. However, most previous models emphasize one of the two inducements probably because of the great difficulty to solve the behavior conflict caused by two inducements. Here, we propose an environment-driven social force model to simulate overall foraging process of an agent group. The social force concept is adopted to quantify the conspecific effects and the interactions between individuals and the environment. The cohesion-first rule is implemented to solve the conflict, which means that individuals preferentially guarantee the collective cohesion under the environmental effect. The obtained results efficiently comply with the empirical reports that mean the Lévy walk pattern of individual movement paths and the high consistency and cohesion of the entity group. By extensive simulations, we also validate the impact of two inducements for individual behaviors in comparison with several classic models

MengeROS: A Crowd Simulation Tool for Autonomous Robot Navigation

AAAI Conferences

While effective navigation in large, crowded environments is essential for an autonomous robot, preliminary testing of algorithms to support it requires simulation across a broad range of crowd scenarios. Most available simulation tools provide either realistic crowds without robots or realistic robots without realistic crowds. This paper introduces MengeROS, a 2-D simulator that realistically integrates multiple robots and crowds. MengeROS provides a broad range of settings in which to test the capabilities and performance of navigation algorithms designed for large crowded environments.