Co-Training Based Bilingual Sentiment Lexicon Learning

AAAI Conferences

In this paper, we address the issue of bilingual sentiment lexicon learning(BSLL) which aims to automatically and simultaneously generate sentiment words for two languages. The underlying motivation is that sentiment information from two languages can perform iterative mutual-teaching in the learning procedure. We propose to develop two classifiers to determine the sentiment polarities of words under a co-training framework, which makes full use of the two-view sentiment information from the two languages. The word alignment derived from the parallel corpus is leveraged to design effective features and to bridge the learning of the two classifiers. The experimental results on English and Chinese languages show the effectiveness of our approach in BSLL.


Acquiring Commonsense Knowledge for Sentiment Analysis through Human Computation

AAAI Conferences

Many Artificial Intelligence tasks need large amounts of commonsense knowledge. Because obtaining this knowledge through machine learning would require a huge amount of data, a better alternative is to elicit it from people through human computation. We consider the sentiment classification task, where knowledge about the contexts that impact word polarities is crucial, but hard to acquire from data. We describe a novel task design that allows us to crowdsource this knowledge through Amazon Mechanical Turk with high quality. We show that the commonsense knowledge acquired in this way dramatically improves the performance of established sentiment classification methods.


Sentiment Analysis with AFINN Lexicon – Himanshu Lohiya – Medium

#artificialintelligence

The AFINN lexicon is perhaps one of the simplest and most popular lexicons that can be used extensively for sentiment analysis. The current version of the lexicon is AFINN-en-165. You can find this lexicon at the author's official GitHub repository. The author has also created a nice wrapper library on top of this in Python called afinn, which we will be using for our analysis. Let's look at some visualisations now.


Target-Dependent Twitter Sentiment Classification with Rich Automatic Features

AAAI Conferences

Target-dependent sentiment analysis on Twitter has attracted increasing research attention. Most previous work relies on syntax, such as automatic parse trees, which are subject to noise for informal text such as tweets. In this paper, we show that competitive results can be achieved without the use of syntax, by extracting a rich set of automatic features. In particular, we split a tweet into a left context and a right context according to a given target, using distributed word representations and neural pooling functions to extract features. Both sentiment-driven and standard embeddings are used, and a rich set of neural pooling functions are explored. Sentiment lexicons are used as an additional source of information for feature extraction. In standard evaluation, the conceptually simple method gives a 4.8% absolute improvement over the state-of-the-art on three-way targeted sentiment classification, achieving the best reported results for this task.


SocialSent: Domain-Specific Sentiment Lexicons

@machinelearnbot

The word soft may evoke positive connotations of warmth and cuddliness in many contexts, but calling a hockey player soft would be an insult. If you were to say something was terrific in the 1800s, this would probably imply that it was terrifying and awe-inspiring; today, terrific basically just implies that something is (pretty) good.