Learning From What You Don't Observe

arXiv.org Artificial Intelligence

The process of diagnosis involves learning about the state of a system from various observations of symptoms or findings about the system. Sophisticated Bayesian (and other) algorithms have been developed to revise and maintain beliefs about the system as observations are made. Nonetheless, diagnostic models have tended to ignore some common sense reasoning exploited by human diagnosticians; In particular, one can learn from which observations have not been made, in the spirit of conversational implicature. There are two concepts that we describe to extract information from the observations not made. First, some symptoms, if present, are more likely to be reported before others. Second, most human diagnosticians and expert systems are economical in their data-gathering, searching first where they are more likely to find symptoms present. Thus, there is a desirable bias toward reporting symptoms that are present. We develop a simple model for these concepts that can significantly improve diagnostic inference.


Integrating Probabilistic, Taxonomic and Causal Knowledge in Abductive Diagnosis

arXiv.org Artificial Intelligence

We propose an abductive diagnosis theory that integrates probabilistic, causal and taxonomic knowledge. Probabilistic knowledge allows us to select the most likely explanation; causal knowledge allows us to make reasonable independence assumptions; taxonomic knowledge allows causation to be modeled at different levels of detail, and allows observations be described in different levels of precision. Unlike most other approaches where a causal explanation is a hypothesis that one or more causative events occurred, we define an explanation of a set of observations to be an occurrence of a chain of causation events. These causation events constitute a scenario where all the observations are true. We show that the probabilities of the scenarios can be computed from the conditional probabilities of the causation events. Abductive reasoning is inherently complex even if only modest expressive power is allowed. However, our abduction algorithm is exponential only in the number of observations to be explained, and is polynomial in the size of the knowledge base. This contrasts with many other abduction procedures that are exponential in the size of the knowledge base.


SAT Solvers and Computer Algebra Systems: A Powerful Combination for Mathematics

arXiv.org Artificial Intelligence

Over the last few decades, many distinct lines of research aimed at automating mathematics have been developed, including computer algebra systems (CASs) for mathematical modelling, automated theorem provers for first-order logic, SAT/SMT solvers aimed at program verification, and higher-order proof assistants for checking mathematical proofs. More recently, some of these lines of research have started to converge in complementary ways. One success story is the combination of SAT solvers and CASs (SAT+CAS) aimed at resolving mathematical conjectures. Many conjectures in pure and applied mathematics are not amenable to traditional proof methods. Instead, they are best addressed via computational methods that involve very large combinatorial search spaces. SAT solvers are powerful methods to search through such large combinatorial spaces---consequently, many problems from a variety of mathematical domains have been reduced to SAT in an attempt to resolve them. However, solvers traditionally lack deep repositories of mathematical domain knowledge that can be crucial to pruning such large search spaces. By contrast, CASs are deep repositories of mathematical knowledge but lack efficient general search capabilities. By combining the search power of SAT with the deep mathematical knowledge in CASs we can solve many problems in mathematics that no other known methods seem capable of solving. We demonstrate the success of the SAT+CAS paradigm by highlighting many conjectures that have been disproven, verified, or partially verified using our tool MathCheck. These successes indicate that the paradigm is positioned to become a standard method for solving problems requiring both a significant amount of search and deep mathematical reasoning. For example, the SAT+CAS paradigm has recently been used by Heule, Kauers, and Seidl to find many new algorithms for $3\times3$ matrix multiplication.


Probabilistic Evaluation of Candidates and Symptom Clustering for Multidisorder Diagnosis

arXiv.org Artificial Intelligence

This paper derives a formula for computing the conditional probability of a set of candidates, where a candidate is a set of disorders that explain a given set of positive findings. Such candidate sets are produced by a recent method for multidisorder diagnosis called symptom clustering. A symptom clustering represents a set of candidates compactly as a cartesian product of differential diagnoses. By evaluating the probability of a candidate set, then, a large set of candidates can be validated or pruned simultaneously. The probability of a candidate set is then specialized to obtain the probability of a single candidate. Unlike earlier results, the equation derived here allows the specification of positive, negative, and unknown symptoms and does not make assumptions about disorders not in the candidate.