Goto

Collaborating Authors

Content preserving text generation with attribute controls

Neural Information Processing Systems

In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.


Content preserving text generation with attribute controls

arXiv.org Machine Learning

In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.


Microsoft's Slack rival gets translation and Surface Hub compatibility

Engadget

Microsoft says that its new Direct Routing service will transform Teams into a "full voice service" that works for both calling and meeting room devices. For instance, "Microsoft Teams will be natively supported on a Surface Hub (above), enhancing the capabilities of Teams in huddle spaces and meeting rooms," the software giant said. Team Meetings will also support audio and HD video conference room systems from Lenovo, HP, Logitech and others, along with any Skype Room systems. Microsoft's AI has also made it easier to initiate and participate in Teams chats. You can now start, join or add people to meetings by giving natural language voice commands to Cortana, for one.


Dual Attention Network for Product Compatibility and Function Satisfiability Analysis

AAAI Conferences

Product compatibility and functionality are of utmost importance to customers when they purchase products, and to sellers and manufacturers when they sell products. Due to the huge number of products available online, it is infeasible to enumerate and test the compatibility and functionality of every product. In this paper, we address two closely related problems: product compatibility analysis and function satisfiability analysis, where the second problem is a generalization of the first problem (e.g., whether a product works with another product can be considered as a special function). We first identify a novel question and answering corpus that is up-to-date regarding product compatibility and functionality information. To allow automatic discovery product compatibility and functionality, we then propose a deep learning model called Dual Attention Network (DAN). Given a QA pair for a to-be-purchased product, DAN learns to 1) discover complementary products (or functions), and 2) accurately predict the actual compatibility (or satisfiability) of the discovered products (or functions). The challenges addressed by the model include the briefness of QAs, linguistic patterns indicating compatibility, and the appropriate fusion of questions and answers. We conduct experiments to quantitatively and qualitatively show that the identified products and functions have both high coverage and accuracy, compared with a wide spectrum of baselines.


Compatibility Family Learning for Item Recommendation and Generation

AAAI Conferences

Compatibility between items, such as clothes and shoes, is a major factor among customer's purchasing decisions. However, learning "compatibility" is challenging due to (1) broader notions of compatibility than those of similarity, (2) the asymmetric nature of compatibility, and (3) only a small set of compatible and incompatible items are observed. We propose an end-to-end trainable system to embed each item into a latent vector and project a query item into K compatible prototypes in the same space. These prototypes reflect the broad notions of compatibility. We refer to both the embedding and prototypes as "Compatibility Family." In our learned space, we introduce a novel Projected Compatibility Distance (PCD) function which is differentiable and ensures diversity by aiming for at least one prototype to be close to a compatible item, whereas none of the prototypes are close to an incompatible item. We evaluate our system on a toy dataset, two Amazon product datasets, and Polyvore outfit dataset. Our method consistently achieves state-of-the-art performance. Finally, we show that we can visualize the candidate compatible prototypes using a Metric-regularized Conditional Generative Adversarial Network (MrCGAN), where the input is a projected prototype and the output is a generated image of a compatible item. We ask human evaluators to judge the relative compatibility between our generated images and images generated by CGANs conditioned directly on query items. Our generated images are significantly preferred, with roughly twice the number of votes as others.