Goto

Collaborating Authors

Manipulation of Nanson's and Baldwin's Rules

arXiv.org Artificial Intelligence

Nanson's and Baldwin's voting rules select a winner by successively eliminating candidates with low Borda scores. We show that these rules have a number of desirable computational properties. In particular, with unweighted votes, it is NP-hard to manipulate either rule with one manipulator, whilst with weighted votes, it is NP-hard to manipulate either rule with a small number of candidates and a coalition of manipulators. As only a couple of other voting rules are known to be NP-hard to manipulate with a single manipulator, Nanson's and Baldwin's rules appear to be particularly resistant to manipulation from a theoretical perspective. We also propose a number of approximation methods for manipulating these two rules. Experiments demonstrate that both rules are often difficult to manipulate in practice. These results suggest that elimination style voting rules deserve further study.


Complexity of and Algorithms for Borda Manipulation

AAAI Conferences

We prove that it is NP-hard for a coalition of two manipulators to compute how to manipulate the Borda voting rule. This resolves one of the last open problems in the computational complexity of manipulating common voting rules. Because of this NP-hardness, we treat computing a manipulation as an approximation problem where we try to minimize the number of manipulators. Based on ideas from bin packing and multiprocessor scheduling, we propose two new approximation methods to compute manipulations of the Borda rule. Experiments show that these methods significantly outperform the previous best known approximation method. We are able to find optimal manipulations in almost all the randomly generated elections tested. Our results suggest that, whilst computing a manipulation of the Borda rule by a coalition is NP-hard, computational complexity may provide only a weak barrier against manipulation in practice.


Eliminating the Weakest Link: Making Manipulation Intractable?

arXiv.org Artificial Intelligence

Successive elimination of candidates is often a route to making manipulation intractable to compute. We prove that eliminating candidates does not necessarily increase the computational complexity of manipulation. However, for many voting rules used in practice, the computational complexity increases. For example, it is already known that it is NP-hard to compute how a single voter can manipulate the result of single transferable voting (the elimination version of plurality voting). We show here that it is NP-hard to compute how a single voter can manipulate the result of the elimination version of veto voting, of the closely related Coombs' rule, and of the elimination versions of a general class of scoring rules.


Eliminating the Weakest Link: Making Manipulation Intractable?

AAAI Conferences

Successive elimination of candidates is often a route to making manipulation intractable to compute. We prove that eliminating candidates does not necessarily increase the computational complexity of manipulation. However, for many voting rules used in practice, the computational complexity increases. For example, it is already known that it is NP-hard to compute how a single voter can manipulate the result of single transferable voting (the elimination version of plurality voting). We show here that it is NP-hard to compute how a single voter can manipulate the result of the elimination version of veto voting, of the closely related Coombs’ rule, and of the elimination versions of a general class of scoring rules.


Complexity of and Algorithms for Borda Manipulation

arXiv.org Artificial Intelligence

We prove that it is NP-hard for a coalition of two manipulators to compute how to manipulate the Borda voting rule. This resolves one of the last open problems in the computational complexity of manipulating common voting rules. Because of this NP-hardness, we treat computing a manipulation as an approximation problem where we try to minimize the number of manipulators. Based on ideas from bin packing and multiprocessor scheduling, we propose two new approximation methods to compute manipulations of the Borda rule. Experiments show that these methods significantly outperform the previous best known %existing approximation method. We are able to find optimal manipulations in almost all the randomly generated elections tested. Our results suggest that, whilst computing a manipulation of the Borda rule by a coalition is NP-hard, computational complexity may provide only a weak barrier against manipulation in practice.