CAPIR: Collaborative Action Planning with Intention Recognition

AAAI Conferences

We apply decision theoretic techniques to construct non-player characters that are able to assist a human player in collaborative games. The method is based on solving Markov decision processes, which can be difficult when the game state is described by many variables. To scale to more complex games, the method allows decomposition of a game task into subtasks, each of which can be modelled by a Markov decision process. Intention recognition is used to infer the subtask that the human is currently performing, allowing the helper to assist the human in performing the correct task. Experiments show that the method can be effective, giving near-human level performance in helping a human in a collaborative game.


How a Bayesian Approaches Games Like Chess

AAAI Conferences

Eric B. Baum 1 NEC Research Institute, 4 Independence Way, Princeton NJ 08540 eric@research.NJ.NEC.COM Abstract The point of game tree search is to insulate oneself from errors in the evaluation function. The standard approach is to grow a full width tree as deep as time allows, and then value the tree as if the leaf evaluations were exact. This has been effective in many games because of the computational efficiency of the alpha-beta algorithm. A Bayesian would suggest instead to train a model of one's uncertainty. This model adds extra information in addition to the standard evaluation function. Within such a formal model, there is an optimal tree growth procedure and an optimal method of valueing the tree. We describe how to optimally value the tree, and how to approximate on line the optimal tree to search.


Probabilistic Goal Recognition in Interactive Narrative Environments

AAAI Conferences

Recent years have witnessed a growing interest in interactive narrative-centered virtual environments for education, training, and entertainment. Narrative environments dynamically craft engaging story-based experiences for users, who are themselves active participants in unfolding stories. A key challenge posed by interactive narrative is recognizing users' goals so that narrative planners can dynamically orchestrate plot elements and character actions to create rich, customized stories. In this paper we present an inductive approach to predicting users' goals by learning probabilistic goal recognition models. This approach has been evaluated in a narrative environment for the domain of microbiology in which the user plays the role of a medical detective solving a science mystery. An empirical evaluation of goal recognition based on n-gram models and Bayesian networks suggests that the models offer significant predictive power.


Beating humans in a penny-matching game by leveraging cognitive hierarchy theory and Bayesian learning

arXiv.org Artificial Intelligence

Beating humans in a penny-matching game by leveraging cognitive hierarchy theory and Bayesian learning Ran Tian, Nan Li, Ilya Kolmanovsky, and Anouck Girard Abstract -- It is a longstanding goal of artificial intelligence (AI) to be superior to human beings in decision making. Games are suitable for testing AI capabilities of making good decisions in non-numerical tasks. In this paper, we develop a new AI algorithm to play the penny-matching game considered in Shannon's "mind-reading machine" (1953) against human players. In particular, we exploit cognitive hierarchy theory and Bayesian learning techniques to continually evolve a model for predicting human player decisions, and let the AI player make decisions according to the model predictions to pursue the best chance of winning. Experimental results show that our AI algorithm beats 27 out of 30 volunteer human players.


Efficient Bayesian Inference for Generalized Bradley-Terry Models

arXiv.org Machine Learning

The Bradley-Terry model is a popular approach to describe probabilities of the possible outcomes when elements of a set are repeatedly compared with one another in pairs. It has found many applications including animal behaviour, chess ranking and multiclass classification. Numerous extensions of the basic model have also been proposed in the literature including models with ties, multiple comparisons, group comparisons and random graphs. From a computational point of view, Hunter (2004) has proposed efficient iterative MM (minorization-maximization) algorithms to perform maximum likelihood estimation for these generalized Bradley-Terry models whereas Bayesian inference is typically performed using MCMC (Markov chain Monte Carlo) algorithms based on tailored Metropolis-Hastings (M-H) proposals. We show here that these MM\ algorithms can be reinterpreted as special instances of Expectation-Maximization (EM) algorithms associated to suitable sets of latent variables and propose some original extensions. These latent variables allow us to derive simple Gibbs samplers for Bayesian inference. We demonstrate experimentally the efficiency of these algorithms on a variety of applications.