Recurrently Controlled Recurrent Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture. Additionally, RCRN achieves state-of-the-art results on several well-established datasets.


Recurrently Controlled Recurrent Networks

arXiv.org Artificial Intelligence

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture.


Recurrently Controlled Recurrent Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture. Additionally, RCRN achieves state-of-the-art results on several well-established datasets.


Sentence-State LSTM for Text Representation

arXiv.org Machine Learning

Bi-directional LSTMs are a powerful tool for text representation. On the other hand, they have been shown to suffer various limitations due to their sequential nature. We investigate an alternative LSTM structure for encoding text, which consists of a parallel state for each word. Recurrent steps are used to perform local and global information exchange between words simultaneously, rather than incremental reading of a sequence of words. Results on various classification and sequence labelling benchmarks show that the proposed model has strong representation power, giving highly competitive performances compared to stacked BiLSTM models with similar parameter numbers.


Variational Bi-LSTMs

arXiv.org Machine Learning

Recurrent neural networks like long short-term memory (LSTM) are important architectures for sequential prediction tasks. LSTMs (and RNNs in general) model sequences along the forward time direction. Bidirectional LSTMs (Bi-LSTMs) on the other hand model sequences along both forward and backward directions and are generally known to perform better at such tasks because they capture a richer representation of the data. In the training of Bi-LSTMs, the forward and backward paths are learned independently. We propose a variant of the Bi-LSTM architecture, which we call Variational Bi-LSTM, that creates a channel between the two paths (during training, but which may be omitted during inference); thus optimizing the two paths jointly. We arrive at this joint objective for our model by minimizing a variational lower bound of the joint likelihood of the data sequence. Our model acts as a regularizer and encourages the two networks to inform each other in making their respective predictions using distinct information. We perform ablation studies to better understand the different components of our model and evaluate the method on various benchmarks, showing state-of-the-art performance.