Importance of Semantic Representation: Dataless Classification

AAAI Conferences

Traditionally, text categorization has been studied as the problem of training of a classifier using labeled data. However, people can categorize documents into named categories without any explicit training because we know the meaning of category names. In this paper, we introduce Dataless Classification, a learning protocol that uses world knowledge to induce classifiers without the need for any labeled data. Like humans, a dataless classifier interprets a string of words as a set of semantic concepts. We propose a model for dataless classification and show that the label name alone is often sufficient to induce classifiers. Using Wikipedia as our source of world knowledge, we get 85.29% accuracy on tasks from the 20 Newsgroup dataset and 88.62% accuracy on tasks from a Yahoo! Answers dataset without any labeled or unlabeled data from the datasets. With unlabeled data, we can further improve the results and show quite competitive performance to a supervised learning algorithm that uses 100 labeled examples.


Okinet: Automatic Extraction of a Medical Ontology From Wikipedia

AAAI Conferences

The medical domain provides a fertile ground for the application of ontological knowledge. Ontologies are an essential part of many approaches to medical text processing, understanding and reasoning. However, the creation of large, high quality medical ontologies is not trivial, requiring the analysis of domain sources, background knowledge, as well as obtaining consensus among experts. Current methods are labor intensive, prone to generate inconsistencies, and often require expert knowledge. Fortunately, semi structured information repositories, like Wikipedia, provide a valuable resource from which to mine structured information.


On Dataless Hierarchical Text Classification

AAAI Conferences

In this paper, we systematically study the problem of dataless hierarchical text classification. Unlike standard text classification schemes that rely on supervised training, dataless classification depends on understanding the labels of the sought after categories and requires no labeled data. Given a collection of text documents and a set of labels, we show that understanding the labels can be used to accurately categorize the documents. This is done by embedding both labels and documents in a semantic space that allows one to compute meaningful semantic similarity between a document and a potential label. We show that this scheme can be used to support accurate multiclass classification without any supervision. We study several semantic representations and show how to improve the classification using bootstrapping. Our results show that bootstrapped dataless classification is competitive with supervised classification with thousands of labeled examples.


Text Classification by Labeling Words

AAAI Conferences

Traditionally, text classifiers are built from labeled training examples. Labeling is usually done manually by human experts (or the users), which is a labor intensive and time consuming process. In the past few years, researchers investigated various forms of semi-supervised learning to reduce the burden of manual labeling. In this paper, we propose a different approach. Instead of labeling a set of documents, the proposed method labels a set of representative words for each class.


Machine Learning with World Knowledge: The Position and Survey

arXiv.org Machine Learning

Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic.