Collaborating Authors

Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM

AAAI Conferences

Analyzing people’s opinions and sentiments towards certain aspects is an important task of natural language understanding. In this paper, we propose a novel solution to targeted aspect-based sentiment analysis, which tackles the challenges of both aspect-based sentiment analysis and targeted sentiment analysis by exploiting commonsense knowledge. We augment the long short-term memory (LSTM) network with a hierarchical attention mechanism consisting of a target-level attention and a sentence-level attention. Commonsense knowledge of sentiment-related concepts is incorporated into the end-to-end training of a deep neural network for sentiment classification. In order to tightly integrate the commonsense knowledge into the recurrent encoder, we propose an extension of LSTM, termed Sentic LSTM. We conduct experiments on two publicly released datasets, which show that the combination of the proposed attention architecture and Sentic LSTM can outperform state-of-the-art methods in targeted aspect sentiment tasks.

Learning Latent Opinions for Aspect-level Sentiment Classification

AAAI Conferences

Aspect-level sentiment classification aims at detecting the sentiment expressed towards a particular target in a sentence. Based on the observation that the sentiment polarity is often related to specific spans in the given sentence, it is possible to make use of such information for better classification. On the other hand, such information can also serve as justifications associated with the predictions.We propose a segmentation attention based LSTM model which can effectively capture the structural dependencies between the target and the sentiment expressions with a linear-chain conditional random field (CRF) layer. The model simulates human's process of inferring sentiment information when reading: when given a target, humans tend to search for surrounding relevant text spans in the sentence before making an informed decision on the underlying sentiment information.We perform sentiment classification tasks on publicly available datasets on online reviews across different languages from SemEval tasks and social comments from Twitter. Extensive experiments show that our model achieves the state-of-the-art performance while extracting interpretable sentiment expressions.  

Learning to Attend via Word-Aspect Associative Fusion for Aspect-Based Sentiment Analysis

AAAI Conferences

Aspect-based sentiment analysis (ABSA) tries to predict the polarity of a given document with respect to a given aspect entity. While neural network architectures have been successful in predicting the overall polarity of sentences, aspect-specific sentiment analysis still remains as an open problem. In this paper, we propose a novel method for integrating aspect information into the neural model. More specifically, we incorporate aspect information into the neural model by modeling word-aspect relationships. Our novel model, Aspect Fusion LSTM (AF-LSTM) learns to attend based on associative relationships between sentence words and aspect which allows our model to adaptively focus on the correct words given an aspect term. This ameliorates the flaws of other state-of-the-art models that utilize naive concatenations to model word-aspect similarity. Instead, our model adopts circular convolution and circular correlation to model the similarity between aspect and words and elegantly incorporates this within a differentiable neural attention framework. Finally, our model is end-to-end differentiable and highly related to convolution-correlation (holographic like) memories. Our proposed neural model achieves state-of-the-art performance on benchmark datasets, outperforming ATAE-LSTM by 4%-5% on average across multiple datasets.

Adversarial Training for Aspect-Based Sentiment Analysis with BERT Machine Learning

Aspect-Based Sentiment Analysis (ABSA) deals with the extraction of sentiments and their targets. Collecting labeled data for this task in order to help neural networks generalize better can be laborious and time-consuming. As an alternative, similar data to the real-world examples can be produced artificially through an adversarial process which is carried out in the embedding space. Although these examples are not real sentences, they have been shown to act as a regularization method which can make neural networks more robust. In this work, we apply adversarial training, which was put forward by Goodfellow et al. (2014), to the post-trained BERT (BERT-PT) language model proposed by Xu et al. (2019) on the two major tasks of Aspect Extraction and Aspect Sentiment Classification in sentiment analysis. After improving the results of post-trained BERT by an ablation study, we propose a novel architecture called BERT Adversarial Training (BAT) to utilize adversarial training in ABSA. The proposed model outperforms post-trained BERT in both tasks. To the best of our knowledge, this is the first study on the application of adversarial training in ABSA.

Representation Learning for Aspect Category Detection in Online Reviews

AAAI Conferences

User-generated reviews are valuable resources for decision making. Identifying the aspect categories discussed in a given review sentence (e.g., “food” and “service” in restaurant reviews) is an important task of sentiment analysis and opinion mining. Given a predefined aspect category set, most previous researches leverage hand-crafted features and a classification algorithm to accomplish the task. The crucial step to achieve better performance is feature engineering which consumes much human effort and may be unstable when the product domain changes. In this paper, we propose a representation learning approach to automatically learn useful features for aspect category detection. Specifically, a semi-supervised word embedding algorithm is first proposed to obtain continuous word representations on a large set of reviews with noisy labels. Afterwards, we propose to generate deeper and hybrid features through neural networks stacked on the word vectors. A logistic regression classifier is finally trained with the hybrid features to predict the aspect category. The experiments are carried out on a benchmark dataset released by SemEval-2014. Our approach achieves the state-of-the-art performance and outperforms the best participating team as well as a few strong baselines.