Herbrich, Ralf, Graepel, Thore

We present a bound on the generalisation error of linear classifiers in terms of a refined margin quantity on the training set. The result is obtained in a PAC-Bayesian framework and is based on geometrical arguments in the space of linear classifiers. The new bound constitutes an exponential improvement of the so far tightest margin bound by Shawe-Taylor et al. [8] and scales logarithmically in the inverse margin. Even in the case of less training examples than input dimensions sufficiently large margins lead to nontrivial bound values and - for maximum margins - to a vanishing complexity term.Furthermore, the classical margin is too coarse a measure for the essential quantity that controls the generalisation error: the volume ratio between the whole hypothesis space and the subset of consistent hypotheses. The practical relevance of the result lies in the fact that the well-known support vector machine is optimal w.r.t. the new bound only if the feature vectors are all of the same length. As a consequence we recommend to use SVMs on normalised feature vectors only - a recommendation that is well supported by our numerical experiments on two benchmark data sets. 1 Introduction Linear classifiers are exceedingly popular in the machine learning community due to their straightforward applicability and high flexibility which has recently been boosted by the so-called kernel methods [13]. A natural and popular framework for the theoretical analysis of classifiers is the PAC (probably approximately correct) framework[11] which is closely related to Vapnik's work on the generalisation error [12]. For binary classifiers it turned out that the growth function is an appropriate measureof "complexity" and can tightly be upper bounded by the VC (Vapnik-Chervonenkis) dimension [14].

This article is intended for beginners in deep learning who wish to gain knowledge about probability and statistics and also as a reference for practitioners. In my previous article, I wrote about the concepts of linear algebra for deep learning in a top down approach ( link for the article) (If you do not have enough idea about linear algebra, please read that first).The same top down approach is used here.Providing the description of use cases first and then the concepts. All the example code uses python and numpy.Formulas are provided as images for reuse. Probability is the science of quantifying uncertain things.Most of machine learning and deep learning systems utilize a lot of data to learn about patterns in the data.Whenever data is utilized in a system rather than sole logic, uncertainty grows up and whenever uncertainty grows up, probability becomes relevant. By introducing probability to a deep learning system, we introduce common sense to the system.Otherwise the system would be very brittle and will not be useful.In deep learning, several models like bayesian models, probabilistic graphical models, hidden markov models are used.They depend entirely on probability concepts.

Depending on the algorithm/model that generates this dataset metrics present in the dataset will vary. Here is a list of metrics based on the model: Linear Regression, CART numeric, Elastic Net Linear: R-Square, R-Square Adjusted, Mean Absolute Error(MAE), Mean Squared Error(MSE), Relative Absolute Error(RAE), Related Squared Error(RSE), Root Mean Squared Error(RMSE) CART(Classification And Regression Trees), Naive Bayes Classification, Neural Network, Support Vector Machine(SVM), Random Forest, Logistic Regression: Now you know what the Related datasets are and how they can be useful for fine tuning your Machine Learning model or for comparing two different models. .

Holsclaw, Tracy, Greene, Arthur M., Robertson, Andrew W., Smyth, Padhraic

Discrete-time hidden Markov models are a broadly useful class of latent-variable models with applications in areas such as speech recognition, bioinformatics, and climate data analysis. It is common in practice to introduce temporal non-homogeneity into such models by making the transition probabilities dependent on time-varying exogenous input variables via a multinomial logistic parametrization. We extend such models to introduce additional non-homogeneity into the emission distribution using a generalized linear model (GLM), with data augmentation for sampling-based inference. However, the presence of the logistic function in the state transition model significantly complicates parameter inference for the overall model, particularly in a Bayesian context. To address this we extend the recently-proposed Polya-Gamma data augmentation approach to handle non-homogeneous hidden Markov models (NHMMs), allowing the development of an efficient Markov chain Monte Carlo (MCMC) sampling scheme. We apply our model and inference scheme to 30 years of daily rainfall in India, leading to a number of insights into rainfall-related phenomena in the region. Our proposed approach allows for fully Bayesian analysis of relatively complex NHMMs on a scale that was not possible with previous methods. Software implementing the methods described in the paper is available via the R package NHMM.

Saeedi, Ardavan, Bouchard-côté, Alexandre

We introduce the Gamma-Exponential Process (GEP), a prior over a large family ofcontinuous time stochastic processes. A hierarchical version of this prior (HGEP; the Hierarchical GEP) yields a useful model for analyzing complex time series. Models based on HGEPs display many attractive properties: conjugacy, exchangeability and closed-form predictive distribution for the waiting times, and exact Gibbs updates for the time scale parameters. After establishing these properties, weshow how posterior inference can be carried efficiently using Particle MCMC methods [1]. This yields a MCMC algorithm that can resample entire sequences atomicallywhile avoiding the complications of introducing slice and stick auxiliary variables of the beam sampler [2]. We applied our model to the problem of estimating the disease progression in multiple sclerosis [3], and to RNA evolutionary modeling[4]. In both domains, we found that our model outperformed the standard rate matrix estimation approach.