Goto

Collaborating Authors

Notes on a New Philosophy of Empirical Science

arXiv.org Machine Learning

This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.



Machine Learning Testing: Survey, Landscapes and Horizons

arXiv.org Artificial Intelligence

This paper provides a comprehensive survey of Machine Learning Testing (ML testing) research. It covers 128 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.


Probabilistic Search for Structured Data via Probabilistic Programming and Nonparametric Bayes

arXiv.org Machine Learning

Databases are widespread, yet extracting relevant data can be difficult. Without substantial domain knowledge, multivariate search queries often return sparse or uninformative results. This paper introduces an approach for searching structured data based on probabilistic programming and nonparametric Bayes. Users specify queries in a probabilistic language that combines standard SQL database search operators with an information theoretic ranking function called predictive relevance. Predictive relevance can be calculated by a fast sparse matrix algorithm based on posterior samples from CrossCat, a nonparametric Bayesian model for high-dimensional, heterogeneously-typed data tables. The result is a flexible search technique that applies to a broad class of information retrieval problems, which we integrate into BayesDB, a probabilistic programming platform for probabilistic data analysis. This paper demonstrates applications to databases of US colleges, global macroeconomic indicators of public health, and classic cars. We found that human evaluators often prefer the results from probabilistic search to results from a standard baseline.


Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges

arXiv.org Machine Learning

Machine learning has evolved into an enabling technology for a wide range of highly successful applications. The potential for this success to continue and accelerate has placed machine learning (ML) at the top of research, economic and political agendas. Such unprecedented interest is fuelled by a vision of ML applicability extending to healthcare, transportation, defence and other domains of great societal importance. Achieving this vision requires the use of ML in safety-critical applications that demand levels of assurance beyond those needed for current ML applications. Our paper provides a comprehensive survey of the state-of-the-art in the assurance of ML, i.e. in the generation of evidence that ML is sufficiently safe for its intended use. The survey covers the methods capable of providing such evidence at different stages of the machine learning lifecycle, i.e. of the complex, iterative process that starts with the collection of the data used to train an ML component for a system, and ends with the deployment of that component within the system. The paper begins with a systematic presentation of the ML lifecycle and its stages. We then define assurance desiderata for each stage, review existing methods that contribute to achieving these desiderata, and identify open challenges that require further research.