Multi-task Learning for Target-dependent Sentiment Classification

arXiv.org Machine Learning

Detecting and aggregating sentiments toward people, organizations, and events expressed in unstructured social media have become critical text mining operations. Early systems detected sentiments over whole passages, whereas more recently, target-specific sentiments have been of greater interest. In this paper, we present MTTDSC, a multi-task target-dependent sentiment classification system that is informed by feature representation learnt for the related auxiliary task of passage-level sentiment classification. The auxiliary task uses a gated recurrent unit (GRU) and pools GRU states, followed by an auxiliary fully-connected layer that outputs passage-level predictions. In the main task, these GRUs contribute auxiliary per-token representations over and above word embeddings. The main task has its own, separate GRUs. The auxiliary and main GRUs send their states to a different fully connected layer, trained for the main task. Extensive experiments using two auxiliary datasets and three benchmark datasets (of which one is new, introduced by us) for the main task demonstrate that MTTDSC outperforms state-of-the-art baselines. Using word-level sensitivity analysis, we present anecdotal evidence that prior systems can make incorrect target-specific predictions because they miss sentiments expressed by words independent of target.


Modeling Polarizing Topics: When Do Different Political Communities Respond Differently to the Same News?

AAAI Conferences

Political discourse in the United States is getting increasingly polarized. This polarization frequently causes different communities to react very differently to the same news events. Political blogs as a form of social media provide an unique insight into this phenomenon. We present a multitarget, semisupervised latent variable model, MCR-LDA to model this process by analyzing political blogs posts and their comment sections from different political communities jointly to predict the degree of polarization that news topics cause. Inspecting the model after inference reveals topics and the degree to which it triggers polarization. In this approach, community responses to news topics are observed using sentiment polarity and comment volume which serves as a proxy for the level of interest in the topic. In this context, we also present computational methods to assign sentiment polarity to the comments which serve as targets for latent variable models that predict the polarity based on the topics in the blog content. Our results show that the joint modeling of communities with different political beliefs using MCR-LDA does not sacrifice accuracy in sentiment polarity prediction when compared to approaches that are tailored to specific communities and additionally provides a view of the polarization in responses from the different communities.


Why so? or Why no? Functional Causality for Explaining Query Answers

arXiv.org Artificial Intelligence

In this paper, we propose causality as a unified framework to explain query answers and non-answers, thus generalizing and extending several previously proposed approaches of provenance and missing query result explanations. We develop our framework starting from the well-studied definition of actual causes by Halpern and Pearl. After identifying some undesirable characteristics of the original definition, we propose functional causes as a refined definition of causality with several desirable properties. These properties allow us to apply our notion of causality in a database context and apply it uniformly to define the causes of query results and their individual contributions in several ways: (i) we can model both provenance as well as non-answers, (ii) we can define explanations as either data in the input relations or relational operations in a query plan, and (iii) we can give graded degrees of responsibility to individual causes, thus allowing us to rank causes. In particular, our approach allows us to explain contributions to relational aggregate functions and to rank causes according to their respective responsibilities. We give complexity results and describe polynomial algorithms for evaluating causality in tractable cases. Throughout the paper, we illustrate the applicability of our framework with several examples. Overall, we develop in this paper the theoretical foundations of causality theory in a database context.


Automatic Extraction of Opinion Propositions and their Holders

AAAI Conferences

We identify a new task in the ongoing analysis of opinions: finding propositional opinions, sentential complements which for many verbs contain the actual opinion, rather than full opinion sentences. We propose an extension of semantic parsing techniques, coupled with additional lexical and syntactic features, that can produce labels for propositional opinions as opposed to other syntactic constituents. We describe the annotation of a small corpus of 5,139 sentences with propositional opinion information, and use this corpus to evaluate our methods. We also present results that indicate that the proposed methods can be extended to the related task of identifying opinion holders and associating them with propositional opinions.


Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach

arXiv.org Machine Learning

We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality---and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.