Sentiment Analysis with Global Topics and Local Dependency

AAAI Conferences

With the development of Web 2.0, sentiment analysis has now become a popular research problem to tackle. Recently, topic models have been introduced for the simultaneous analysis for topics and the sentiment in a document. These studies, which jointly model topic and sentiment, take the advantage of the relationship between topics and sentiment, and are shown to be superior to traditional sentiment analysis tools. However, most of them make the assumption that, given the parameters, the sentiments of the words in the document are all independent. In our observation, in contrast, sentiments are expressed in a coherent way. The local conjunctive words, such as “and” or “but”, are often indicative of sentiment transitions. In this paper, we propose a major departure from the previous approaches by making two linked contributions. First, we assume that the sentiments are related to the topic in the document, and put forward a joint sentiment and topic model, i.e. Sentiment-LDA. Second, we observe that sentiments are dependent on local context. Thus, we further extend the Sentiment-LDA model to Dependency-Sentiment-LDA model by relaxing the sentiment independent assumption in Sentiment-LDA. The sentiments of words are viewed as a Markov chain in Dependency-Sentiment-LDA. Through experiments, we show that exploiting the sentiment dependency is clearly advantageous, and that the Dependency-Sentiment-LDA is an effective approach for sentiment analysis.

Learning Latent Opinions for Aspect-level Sentiment Classification

AAAI Conferences

Aspect-level sentiment classification aims at detecting the sentiment expressed towards a particular target in a sentence. Based on the observation that the sentiment polarity is often related to specific spans in the given sentence, it is possible to make use of such information for better classification. On the other hand, such information can also serve as justifications associated with the predictions.We propose a segmentation attention based LSTM model which can effectively capture the structural dependencies between the target and the sentiment expressions with a linear-chain conditional random field (CRF) layer. The model simulates human's process of inferring sentiment information when reading: when given a target, humans tend to search for surrounding relevant text spans in the sentence before making an informed decision on the underlying sentiment information.We perform sentiment classification tasks on publicly available datasets on online reviews across different languages from SemEval tasks and social comments from Twitter. Extensive experiments show that our model achieves the state-of-the-art performance while extracting interpretable sentiment expressions.  

Conversational Sentiment Analysis


I recently built a movie recommender that takes as input a user written passage about liked and/or disliked movies. At the onset of the project I figured that determining which movies users' liked and disliked would be simple. After all, using text to determine whether someone likes or dislike a movie doesn't seem too ambitious. With the variety of packages readily available for sentiment analysis in python, there had to be something available out of the box to do this job. As it turns out, using text to determine whether someone likes vs dislikes a movie, or any named entity, is deceivingly complex.

Extracting Verb Expressions Implying Negative Opinions

AAAI Conferences

Identifying aspect-based opinions has been studied extensively in recent years. However, existing work primarily focused on adjective, adverb, and noun expressions. Clearly, verb expressions can imply opinions too. We found that in many domains verb expressions can be even more important to applications because they often describe major issues of products or services. These issues enable brands and businesses to directly improve their products or services. To the best of our knowledge, this problem has not received much attention in the literature. In this paper, we make an attempt to solve this problem. Our proposed method first extracts verb expressions from reviews and then employs Markov Networks to model rich linguistic features and long distance relationships to identify negative issue expressions. Since our training data is obtained from titles of reviews whose labels are automatically inferred from review ratings, our approach is applicable to any domain without manual involvement. Experimental results using real-life review datasets show that our approach outperforms strong baselines.

Opinion Context Extraction for Aspect Sentiment Analysis

AAAI Conferences

Sentiment analysis is the computational study of opinionated text and is becoming increasing important to online commercial applications. However, the majority of current approaches determine sentiment by attempting to detect the overall polarity of a sentence, paragraph, or text window, but without any knowledge about the entities mentioned (e.g. restaurant) and their aspects (e.g. price). Aspect-level sentiment analysis of customer feedback data when done accurately can be leveraged to understand strong and weak performance points of businesses and services, and can also support the formulation of critical action steps to improve performance. In this paper we focus on aspect-level sentiment classification, studying the role of opinion context extraction for a given aspect and the extent to which traditional and neural sentiment classifiers benefit when trained using the opinion context text. We propose four methods to aspect context extraction using lexical, syntactic and sentiment co-occurrence knowledge. Further, we evaluate the usefulness of the opinion contexts for aspect-sentiment analysis. Our experiments on benchmark data sets from SemEval and a real-world dataset from the insurance domain suggests that extracting the right opinion context is effective in improving classification performance.Specifically combining syntactical features with sentiment co-occurrence knowledge leads to the best aspect-sentiment classification performance.