The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation.

van der Hoeven, Dirk, van Erven, Tim, Kotłowski, Wojciech

A standard introduction to online learning might place Online Gradient Descent at its center and then proceed to develop generalizations and extensions like Online Mirror Descent and second-order methods. Here we explore the alternative approach of putting exponential weights (EW) first. We show that many standard methods and their regret bounds then follow as a special case by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses, and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint, and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW interpretation is that it opens up the possibility of sampling from the EW posterior distribution instead of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate in Online Bandit Linear Optimization.

The question of how to determine the number of independent latent factors (topics) in mixture models such as Latent Dirichlet Allocation (LDA) is of great practical importance. In most applications, the exact number of topics is unknown, and depends on the application and the size of the data set. Bayesian nonparametric methods can avoid the problem of topic number selection, but they can be impracticably slow for large sample sizes and are subject to local optima. We develop a guaranteed procedure for topic number recovery that does not necessitate learning the model's latent parameters beforehand. Our procedure relies on adapting results from random matrix theory. Performance of our topic number recovery procedure is superior to hLDA, a nonparametric method. We also discuss some implications of our results on the sample complexity and accuracy of popular spectral learning algorithms for LDA. Our results and procedure can be extended to spectral learning algorithms for other exchangeable mixture models as well as Hidden Markov Models.

Kakade, Sham M., Seeger, Matthias W., Foster, Dean P.

Dean P. Foster University of Pennsylvania We present a competitive analysis of some nonparametric Bayesian algorithms ina worst-case online learning setting, where no probabilistic assumptions about the generation of the data are made. We consider models which use a Gaussian process prior (over the space of all functions) andprovide bounds on the regret (under the log loss) for commonly usednon-parametric Bayesian algorithms -- including Gaussian regression and logistic regression -- which show how these algorithms can perform favorably under rather general conditions.

Cai, Chenghui, Liao, Xuejun, Carin, Lawrence

A fundamental objective in reinforcement learning is the maintenance of a proper balance between exploration and exploitation. This problem becomes more challenging when the agent can only partially observe the states of its environment. In this paper we propose a dual-policy method for jointly learning the agent behavior and the balance between exploration exploitation, in partially observable environments. The method subsumes traditional exploration, in which the agent takes actions to gather information about the environment, and active learning, in which the agent queries an oracle for optimal actions (with an associated cost for employing the oracle). The form of the employed exploration is dictated by the specific problem. Theoretical guarantees are provided concerning the optimality of the balancing of exploration and exploitation. The effectiveness of the method is demonstrated by experimental results on benchmark problems.