Golovin, Daniel, Krause, Andreas, Ray, Debajyoti

We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise-free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near-optimally. We show that if the observations are noisy, perhaps surprisingly, GBS can perform very poorly. We develop EC2, a novel, greedy active learning algorithm and prove that it is competitive with the optimal policy, thus obtaining the first competitiveness guarantees for Bayesian active learning with noisy observations. Our bounds rely on a recently discovered diminishing returns property called adaptive submodularity, generalizing the classical notion of submodular set functions to adaptive policies. Our results hold even if the tests have non–uniform cost and their noise is correlated. We also propose EffECXtive, a particularly fast approximation of EC2, and evaluate it on a Bayesian experimental design problem involving human subjects, intended to tease apart competing economic theories of how people make decisions under uncertainty.

Golovin, Daniel, Krause, Andreas, Ray, Debajyoti

We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise-free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near-optimally. We show that if the observations are noisy, perhaps surprisingly, GBS can perform very poorly. We develop EC2, a novel, greedy active learning algorithm and prove that it is competitive with the optimal policy, thus obtaining the first competitiveness guarantees for Bayesian active learning with noisy observations. Our bounds rely on a recently discovered diminishing returns property called adaptive submodularity, generalizing the classical notion of submodular set functions to adaptive policies. Our results hold even if the tests have non-uniform cost and their noise is correlated. We also propose EffECXtive, a particularly fast approximation of EC2, and evaluate it on a Bayesian experimental design problem involving human subjects, intended to tease apart competing economic theories of how people make decisions under uncertainty.

Chen, Yuxin (ETH Zurich) | Javdani, Shervin (Carnegie Mellon University) | Karbasi, Amin (Yale University) | Bagnell, J. Andrew (Carnegie Mellon University) | Srinivasa, Siddhartha (Carnegie Mellon University) | Krause, Andreas (ETH Zurich)

How should we gather information to make effective decisions? A classical answer to this fundamental problem is given by the decision-theoretic value of information. Unfortunately, optimizing this objective is intractable, and myopic (greedy) approximations are known to perform poorly. In this paper, we introduce DiRECt, an efficient yet near-optimal algorithm for nonmyopically optimizing value of information. Crucially, DiRECt uses a novel surrogate objective that is: (1) aligned with the value of information problem (2) efficient to evaluate and (3) adaptive submodular. This latter property enables us to utilize an efficient greedy optimization while providing strong approximation guarantees. We demonstrate the utility of our approach on four diverse case-studies: touch-based robotic localization, comparison-based preference learning, wild-life conservation management, and preference elicitation in behavioral economics. In the first application, we demonstrate DiRECt in closed-loop on an actual robotic platform.

Cuong, Nguyen Viet, Lee, Wee Sun, Ye, Nan, Chai, Kian Ming A., Chieu, Hai Leong

We introduce a new objective function for pool-based Bayesian active learning with probabilistic hypotheses. This objective function, called the policy Gibbs error, is the expected error rate of a random classifier drawn from the prior distribution on the examples adaptively selected by the active learning policy. Exact maximization of the policy Gibbs error is hard, so we propose a greedy strategy that maximizes the Gibbs error at each iteration, where the Gibbs error on an instance is the expected error of a random classifier selected from the posterior label distribution on that instance. We apply this maximum Gibbs error criterion to three active learning scenarios: non-adaptive, adaptive, and batch active learning. In each scenario, we prove that the criterion achieves near-maximal policy Gibbs error when constrained to a fixed budget. For practical implementations, we provide approximations to the maximum Gibbs error criterion for Bayesian conditional random fields and transductive Naive Bayes. Our experimental results on a named entity recognition task and a text classification task show that the maximum Gibbs error criterion is an effective active learning criterion for noisy models.

Nguyen, Cuong V., Ho, Lam Si Tung, Xu, Huan, Dinh, Vu, Nguyen, Binh

We study pool-based active learning with abstention feedbacks where a labeler can abstain from labeling a queried example with some unknown abstention rate. Using the Bayesian approach, we develop two new greedy algorithms that learn both the classification problem and the unknown abstention rate at the same time. These are achieved by incorporating the estimated average abstention rate into the greedy criteria. We prove that both algorithms have near-optimality guarantees: they respectively achieve a ${(1-\frac{1}{e})}$ constant factor approximation of the optimal expected or worst-case value of a useful utility function. Our experiments show the algorithms perform well in various practical scenarios.