Active learning of neural response functions with Gaussian processes

Neural Information Processing Systems

A sizable literature has focused on the problem of estimating a low-dimensional feature space capturing a neuron's stimulus sensitivity. However, comparatively little work has addressed the problem of estimating the nonlinear function from feature space to a neuron's output spike rate. Here, we use a Gaussian process (GP) prior over the infinite-dimensional space of nonlinear functions to obtain Bayesian estimates of the "nonlinearity" in the linear-nonlinear-Poisson (LNP) encoding model. This offers flexibility, robustness, and computational tractability compared to traditional methods (e.g., parametric forms, histograms, cubic splines). Most importantly, we develop a framework for optimal experimental design based on uncertainty sampling. This involves adaptively selecting stimuli to characterize the nonlinearity with as little experimental data as possible, and relies on a method for rapidly updating hyperparameters using the Laplace approximation. We apply these methods to data from color-tuned neurons in macaque V1. We estimate nonlinearities in the 3D space of cone contrasts, which reveal that V1 combines cone inputs in a highly nonlinear manner. With simulated experiments, we show that optimal design substantially reduces the amount of data required to estimate this nonlinear combination rule.


Neural system identification for large populations separating "what" and "where"

arXiv.org Machine Learning

Neuroscientists classify neurons into different types that perform similar computations at different locations in the visual field. Traditional methods for neural system identification do not capitalize on this separation of 'what' and 'where'. Learning deep convolutional feature spaces that are shared among many neurons provides an exciting path forward, but the architectural design needs to account for data limitations: While new experimental techniques enable recordings from thousands of neurons, experimental time is limited so that one can sample only a small fraction of each neuron's response space. Here, we show that a major bottleneck for fitting convolutional neural networks (CNNs) to neural data is the estimation of the individual receptive field locations, a problem that has been scratched only at the surface thus far. We propose a CNN architecture with a sparse readout layer factorizing the spatial (where) and feature (what) dimensions. Our network scales well to thousands of neurons and short recordings and can be trained end-to-end. We evaluate this architecture on ground-truth data to explore the challenges and limitations of CNN-based system identification. Moreover, we show that our network model outperforms current state-of-the art system identification models of mouse primary visual cortex.


Neural system identification for large populations separating “what” and “where”

Neural Information Processing Systems

Neuroscientists classify neurons into different types that perform similar computations at different locations in the visual field. Traditional methods for neural system identification do not capitalize on this separation of “what” and “where”. Learning deep convolutional feature spaces that are shared among many neurons provides an exciting path forward, but the architectural design needs to account for data limitations: While new experimental techniques enable recordings from thousands of neurons, experimental time is limited so that one can sample only a small fraction of each neuron's response space. Here, we show that a major bottleneck for fitting convolutional neural networks (CNNs) to neural data is the estimation of the individual receptive field locations – a problem that has been scratched only at the surface thus far. We propose a CNN architecture with a sparse readout layer factorizing the spatial (where) and feature (what) dimensions. Our network scales well to thousands of neurons and short recordings and can be trained end-to-end. We evaluate this architecture on ground-truth data to explore the challenges and limitations of CNN-based system identification. Moreover, we show that our network model outperforms current state-of-the art system identification models of mouse primary visual cortex.


Memory Capacity of Linear vs. Nonlinear Models of Dendritic Integration

Neural Information Processing Systems

Previous biophysical modeling work showed that nonlinear interactions amongnearby synapses located on active dendritic trees can provide a large boost in the memory capacity of a cell (Mel, 1992a, 1992b).


Bayesian Spike-Triggered Covariance Analysis

Neural Information Processing Systems

Neurons typically respond to a restricted number of stimulus features within the high-dimensional space of natural stimuli. Here we describe an explicit model-based interpretation of traditional estimators for a neuron's multi-dimensional feature space, which allows for several important generalizations and extensions. First, we show that traditional estimators based on the spike-triggered average (STA) and spike-triggered covariance (STC) can be formalized in terms of the "expected log-likelihood" of a Linear-Nonlinear-Poisson (LNP) model with Gaussian stimuli. This model-based formulation allows us to define maximum-likelihood and Bayesian estimators that are statistically consistent and efficient in a wider variety of settings, such as with naturalistic (non-Gaussian) stimuli. It also allows us to employ Bayesian methods for regularization, smoothing, sparsification, and model comparison, and provides Bayesian confidence intervals on model parameters. We describe an empirical Bayes method for selecting the number of features, and extend the model to accommodate an arbitrary elliptical nonlinear response function, which results in a more powerful and more flexible model for feature space inference. We validate these methods using neural data recorded extracellularly from macaque primary visual cortex.