Many real-world problems, including inference in Bayes Nets, can be reduced to #SAT, the problem of counting the number of models of a propositional theory. This has motivated the need for efficient #SAT solvers. Currently, such solvers utilize a modified version of DPLL that employs decomposition and caching, techniques that significantly increase the time it takes to process each node in the search space. In addition, the search space is significantly larger than when solving SAT since we must continue searching even after the first solution has been found. It has previously been demonstrated that the size of a DPLL search tree can be significantly reduced by doing more reasoning at each node. However, for SAT the reductions gained are often not worth the extra time required. In this paper we verify the hypothesis that for #SAT this balance changes. In particular, we show that additional reasoning can reduce the size of a #SAT solver's search space, that this reduction cannot always be achieved by the already utilized technique of clause learning, and that this additional reasoning can be cost effective.

This paper reports on the findings of an ongoing project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers which experience abrupt, partial or full failure of component devices. The problem we address is: given a hybrid model of system behavior, a history of executed controller actions, and a history of observations, including an observation of behavior that is aberrant relative to the model of expected behavior, determine what fault occurred to have caused the aberrant behavior. Determining a diagnosis can be cast as a search problem to find the most likely model for the data. Unfortunately, the search space is extremely large. To reduce search space size and to identify an initial set of candidate diagnoses, we propose to exploit techniques originally applied to qualitative diagnosis of continuous systems. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

Guez, Arthur, Silver, David, Dayan, Peter

Bayesian model-based reinforcement learning is a formally elegant approach to learning optimal behaviour under model uncertainty, trading off exploration and exploitation in an ideal way. Unfortunately, finding the resulting Bayes-optimal policies is notoriously taxing, since the search space becomes enormous. In this paper we introduce a tractable, sample-based method for approximate Bayes-optimal planning which exploits Monte-Carlo tree search. Our approach outperformed prior Bayesian model-based RL algorithms by a significant margin on several well-known benchmark problems -- because it avoids expensive applications of Bayes rule within the search tree by lazily sampling models from the current beliefs. We illustrate the advantages of our approach by showing it working in an infinite state space domain which is qualitatively out of reach of almost all previous work in Bayesian exploration.

Berkes, Pietro, Wood, Frank, Pillow, Jonathan W.

The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that combines the observations that (1) marginal distributions over single-neuron spike counts are often approximately Poisson; and (2) joint distributions over the responses of multiple neurons are often strongly dependent. Here, we show that both marginal and joint properties of neural responses can be captured using Poisson copula models. Copulas are joint distributions that allow random variables with arbitrary marginals to be combined while incorporating arbitrary dependencies between them. Different copulas capture different kinds of dependencies, allowing for a richer and more detailed description of dependencies than traditional summary statistics, such as correlation coefficients. We explore a variety of Poisson copula models for joint neural response distributions, and derive an efficient maximum likelihood procedure for estimating them. We apply these models to neuronal data collected in and macaque motor cortex, and quantify the improvement in coding accuracy afforded by incorporating the dependency structure between pairs of neurons.

This list is intended to introduce some of the tools of Bayesian statistics and machine learning that can be useful to computational research in cognitive science. The first section mentions several useful general references, and the others provide supplementary readings on specific topics. If you would like to suggest some additions to the list, contact Tom Griffiths.