Goto

Collaborating Authors


A Multi-Disciplinary Review of Knowledge Acquisition Methods: From Human to Autonomous Eliciting Agents

arXiv.org Artificial Intelligence

This paper offers a multi-disciplinary review of knowledge acquisition methods in human activity systems. The review captures the degree of involvement of various types of agencies in the knowledge acquisition process, and proposes a classification with three categories of methods: the human agent, the human-inspired agent, and the autonomous machine agent methods. In the first two categories, the acquisition of knowledge is seen as a cognitive task analysis exercise, while in the third category knowledge acquisition is treated as an autonomous knowledge-discovery endeavour. The motivation for this classification stems from the continuous change over time of the structure, meaning and purpose of human activity systems, which are seen as the factor that fuelled researchers' and practitioners' efforts in knowledge acquisition for more than a century. We show through this review that the KA field is increasingly active due to the higher and higher pace of change in human activity, and conclude by discussing the emergence of a fourth category of knowledge acquisition methods, which are based on red-teaming and co-evolution.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI

arXiv.org Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.


Visions of a generalized probability theory

arXiv.org Artificial Intelligence

In this Book we argue that the fruitful interaction of computer vision and belief calculus is capable of stimulating significant advances in both fields. From a methodological point of view, novel theoretical results concerning the geometric and algebraic properties of belief functions as mathematical objects are illustrated and discussed in Part II, with a focus on both a perspective 'geometric approach' to uncertainty and an algebraic solution to the issue of conflicting evidence. In Part III we show how these theoretical developments arise from important computer vision problems (such as articulated object tracking, data association and object pose estimation) to which, in turn, the evidential formalism is able to provide interesting new solutions. Finally, some initial steps towards a generalization of the notion of total probability to belief functions are taken, in the perspective of endowing the theory of evidence with a complete battery of estimation and inference tools to the benefit of all scientists and practitioners.