Goto

Collaborating Authors

Relational Dynamic Bayesian Networks

arXiv.org Artificial Intelligence

Stochastic processes that involve the creation of objects and relations over time are widespread, but relatively poorly studied. For example, accurate fault diagnosis in factory assembly processes requires inferring the probabilities of erroneous assembly operations, but doing this efficiently and accurately is difficult. Modeled as dynamic Bayesian networks, these processes have discrete variables with very large domains and extremely high dimensionality. In this paper, we introduce relational dynamic Bayesian networks (RDBNs), which are an extension of dynamic Bayesian networks (DBNs) to first-order logic. RDBNs are a generalization of dynamic probabilistic relational models (DPRMs), which we had proposed in our previous work to model dynamic uncertain domains. We first extend the Rao-Blackwellised particle filtering described in our earlier work to RDBNs. Next, we lift the assumptions associated with Rao-Blackwellization in RDBNs and propose two new forms of particle filtering. The first one uses abstraction hierarchies over the predicates to smooth the particle filters estimates. The second employs kernel density estimation with a kernel function specifically designed for relational domains. Experiments show these two methods greatly outperform standard particle filtering on the task of assembly plan execution monitoring.


Learning Continuous Time Bayesian Networks in Non-stationary Domains

Journal of Artificial Intelligence Research

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Furthermore, the performance achieved by non-stationary continuous time Bayesian networks is compared to that achieved by state-of-the-art algorithms on four real-world datasets, namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.


Simone Villa and Fabio Stella (2016) Learning Continuous Time Bayesian Networks in Non-stationary Domains

#artificialintelligence

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks.


Learning Continuous Time Bayesian Networks in Non-stationary Domains

Journal of Artificial Intelligence Research

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Furthermore, the performance achieved by non-stationary continuous time Bayesian networks is compared to that achieved by state-of-the-art algorithms on four real-world datasets, namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.


Learning Discrete Bayesian Networks from Continuous Data

Journal of Artificial Intelligence Research

Learning Bayesian networks from raw data can help provide insights into the relationships between variables. While real data often contains a mixture of discrete and continuous-valued variables, many Bayesian network structure learning algorithms assume all random variables are discrete. Thus, continuous variables are often discretized when learning a Bayesian network. However, the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled Bayesian discretization method for continuous variables in Bayesian networks with quadratic complexity instead of the cubic complexity of other standard techniques. Empirical demonstrations show that the proposed method is superior to the established minimum description length algorithm. In addition, this paper shows how to incorporate existing methods into the structure learning process to discretize all continuous variables and simultaneously learn Bayesian network structures.