Dhillon, Inderjit S., Ravikumar, Pradeep K., Tewari, Ambuj

Increasingly, optimization problems in machine learning, especially those arising from high-dimensional statistical estimation, have a large number of variables. Modern statistical estimators developed over the past decade have statistical or sample complexity that depends only weakly on the number of parameters when there is some structure to the problem, such as sparsity. A central question is whether similar advances can be made in their computational complexity as well. In this paper, we propose strategies that indicate that such advances can indeed be made. In particular, we investigate the greedy coordinate descent algorithm, and note that performing the greedy step efficiently weakens the costly dependence on the problem size provided the solution is sparse. We then propose a suite of methods that perform these greedy steps efficiently by a reduction to nearest neighbor search. We also devise a more amenable form of greedy descent for composite non-smooth objectives; as well as several approximate variants of such greedy descent. We develop a practical implementation of our algorithm that combines greedy coordinate descent with locality sensitive hashing. Without tuning the latter data structure, we are not only able to significantly speed up the vanilla greedy method, but also outperform cyclic descent when the problem size becomes large. Our results indicate the effectiveness of our nearest neighbor strategies, and also point to many open questions regarding the development of computational geometric techniques tailored towards first-order optimization methods.

Song, Chaobing, Cui, Shaobo, Jiang, Yong, Xia, Shu-Tao

Based on the new rule and the SOTOPO algorithm, the Nesterov's acceleration and stochastic optimization strategies are then successfully applied to the GCD algorithm. The resulted algorithm called accelerated stochastic greedy coordinate descent (ASGCD) has the optimal convergence rate $O(\sqrt{1/\epsilon})$; meanwhile, it reduces the iteration complexity of greedy selection up to a factor of sample size. Both theoretically and empirically, we show that ASGCD has better performance for high-dimensional and dense problems with sparse solution. Papers published at the Neural Information Processing Systems Conference.

Scherrer, Chad, Halappanavar, Mahantesh, Tewari, Ambuj, Haglin, David

We present a generic framework for parallel coordinate descent (CD) algorithms that includes, as special cases, the original sequential algorithms Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.

You, Yang, Lian, Xiangru, Liu, Ji, Yu, Hsiang-Fu, Dhillon, Inderjit S., Demmel, James, Hsieh, Cho-Jui

In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the second part, we develop an efficient kernel SVM solver based on Asy-GCD in the shared memory multi-core setting. Since our algorithm is fully asynchronous--each core does not need to idle and wait for the other cores--the resulting algorithm enjoys good speedup and outperforms existing multi-core kernel SVM solvers including asynchronous stochastic coordinate descent and multi-core LIBSVM.

Lei, Qi, Zhong, Kai, Dhillon, Inderjit S.

In this paper, we propose a coordinate-wise version of the power method from an optimization viewpoint. The vanilla power method simultaneously updates all the coordinates of the iterate, which is essential for its convergence analysis. However, different coordinates converge to the optimal value at different speeds. Our proposed algorithm, which we call coordinate-wise power method, is able to select and update the most important k coordinates in O(kn) time at each iteration, where n is the dimension of the matrix and k <= n is the size of the active set. Inspired by the ''greedy'' nature of our method, we further propose a greedy coordinate descent algorithm applied on a non-convex objective function specialized for symmetric matrices. We provide convergence analyses for both methods. Experimental results on both synthetic and real data show that our methods achieve up to 20 times speedup over the basic power method. Meanwhile, due to their coordinate-wise nature, our methods are very suitable for the important case when data cannot fit into memory. Finally, we introduce how the coordinate-wise mechanism could be applied to other iterative methods that are used in machine learning.