Dutordoir, Vincent, Salimbeni, Hugh, Hensman, James, Deisenroth, Marc

Conditional Density Estimation (CDE) models deal with estimating conditional distributions. The conditions imposed on the distribution are the inputs of the model. CDE is a challenging task as there is a fundamental trade-off between model complexity, representational capacity and overfitting. In this work, we propose to extend the model's input with latent variables and use Gaussian processes (GP) to map this augmented input onto samples from the conditional distribution. Our Bayesian approach allows for the modeling of small datasets, but we also provide the machinery for it to be applied to big data using stochastic variational inference. Our approach can be used to model densities even in sparse data regions, and allows for sharing learned structure between conditions. We illustrate the effectiveness and wide-reaching applicability of our model on a variety of real-world problems, such as spatio-temporal density estimation of taxi drop-offs, non-Gaussian noise modeling, and few-shot learning on omniglot images.

Dutordoir, Vincent, Salimbeni, Hugh, Hensman, James, Deisenroth, Marc

Dutordoir, Vincent, Salimbeni, Hugh, Deisenroth, Marc, Hensman, James

Xiao, Zhisheng, Yan, Qing, Amit, Yali

In this work, we investigate the use of normalizing flows to model conditional distributions. In particular, we use our proposed method to analyze inverse problems with invertible neural networks by maximizing the posterior likelihood. Our method uses only a single loss and is easy to train. This is an improvement on the previous method that solves similar inverse problems with invertible neural networks but which involves a combination of several loss terms with ad-hoc weighting. In addition, our method provides a natural framework to incorporate conditioning in normalizing flows, and therefore, we can train an invertible network to perform conditional generation. We analyze our method and perform a careful comparison with previous approaches. Simple experiments show the effectiveness of our method, and more comprehensive experimental evaluations are undergoing.

Ambrogioni, Luca, Güçlü, Umut, van Gerven, Marcel A. J., Maris, Eric

This paper introduces the kernel mixture network, a new method for nonparametric estimation of conditional probability densities using neural networks. We model arbitrarily complex conditional densities as linear combinations of a family of kernel functions centered at a subset of training points. The weights are determined by the outer layer of a deep neural network, trained by minimizing the negative log likelihood. This generalizes the popular quantized softmax approach, which can be seen as a kernel mixture network with square and non-overlapping kernels. We test the performance of our method on two important applications, namely Bayesian filtering and generative modeling. In the Bayesian filtering example, we show that the method can be used to filter complex nonlinear and non-Gaussian signals defined on manifolds. The resulting kernel mixture network filter outperforms both the quantized softmax filter and the extended Kalman filter in terms of model likelihood. Finally, our experiments on generative models show that, given the same architecture, the kernel mixture network leads to higher test set likelihood, less overfitting and more diversified and realistic generated samples than the quantized softmax approach.