Collaborating Authors

Conditional Density Estimation with Dimensionality Reduction via Squared-Loss Conditional Entropy Minimization Machine Learning

Regression aims at estimating the conditional mean of output given input. However, regression is not informative enough if the conditional density is multimodal, heteroscedastic, and asymmetric. In such a case, estimating the conditional density itself is preferable, but conditional density estimation (CDE) is challenging in high-dimensional space. A naive approach to coping with high-dimensionality is to first perform dimensionality reduction (DR) and then execute CDE. However, such a two-step process does not perform well in practice because the error incurred in the first DR step can be magnified in the second CDE step. In this paper, we propose a novel single-shot procedure that performs CDE and DR simultaneously in an integrated way. Our key idea is to formulate DR as the problem of minimizing a squared-loss variant of conditional entropy, and this is solved via CDE. Thus, an additional CDE step is not needed after DR. We demonstrate the usefulness of the proposed method through extensive experiments on various datasets including humanoid robot transition and computer art.

Fast Conditional Density Estimation for Quantitative Structure-Activity Relationships

AAAI Conferences

Many methods for quantitative structure-activity relationships (QSARs) deliver point estimates only, without quantifying the uncertainty inherent in the prediction. One way to quantify the uncertainy of a QSAR prediction is to predict the conditional density of the activity given the structure instead of a point estimate. If a conditional density estimate is available, it is easy to derive prediction intervals of activities. In this paper, we experimentally evaluate and compare three methods for conditional density estimation for their suitability in QSAR modeling. In contrast to traditional methods for conditional density estimation, they are based on generic machine learning schemes, more specifically, class probability estimators. Our experiments show that a kernel estimator based on class probability estimates from a random forest classifier is highly competitive with Gaussian process regression, while taking only a fraction of the time for training. Therefore, generic machine-learning based methods for conditional density estimation may be a good and fast option for quantifying uncertainty in QSAR modeling.

Fast Nonparametric Conditional Density Estimation Machine Learning

Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundamental and widely applicable, nonparametric conditional density estimators have received relatively little attention from statisticians and little or none from the machine learning community. None of that work has been applied to greater than bivariate data, presumably due to the computational difficulty of data-driven bandwidth selection. We describe the double kernel conditional density estimator and derive fast dual-tree-based algorithms for bandwidth selection using a maximum likelihood criterion. These techniques give speedups of up to 3.8 million in our experiments, and enable the first applications to previously intractable large multivariate datasets, including a redshift prediction problem from the Sloan Digital Sky Survey.

Conditional Density Estimation via Weighted Logistic Regressions Machine Learning

Compared to the conditional mean as a simple point estimator, the conditional density function is more informative to describe the distributions with multi-modality, asymmetry or heteroskedasticity. In this paper, we propose a novel parametric conditional density estimation method by showing the connection between the general density and the likelihood function of inhomogeneous Poisson process models. The maximum likelihood estimates can be obtained via weighted logistic regressions, and the computation can be significantly relaxed by combining a block-wise alternating maximization scheme and local case-control sampling. We also provide simulation studies for illustration.

The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities

Neural Information Processing Systems

Non-parametric multivariate density estimation faces strong statistical and computational bottlenecks, and the more practical approaches impose near-parametric assumptions on the form of the density functions. In this paper, we leverage recent developments to propose a class of non-parametric models which have very attractive computational and statistical properties. Our approach relies on the simple function space assumption that the conditional distribution of each variable conditioned on the other variables has a non-parametric exponential family form.