Huang, Xiangru, Liang, Zhenxiao, Bajaj, Chandrajit, Huang, Qixing

In this paper, we introduce a robust algorithm, \textsl{TranSync}, for the 1D translation synchronization problem, in which the aim is to recover the global coordinates of a set of nodes from noisy measurements of relative coordinates along an observation graph. The basic idea of TranSync is to apply truncated least squares, where the solution at each step is used to gradually prune out noisy measurements. We analyze TranSync under both deterministic and randomized noisy models, demonstrating its robustness and stability. Experimental results on synthetic and real datasets show that TranSync is superior to state-of-the-art convex formulations in terms of both efficiency and accuracy.

Gamarnik, David, Gaudio, Julia

We consider the problem of estimating an unknown coordinate-wise monotone function given noisy measurements, known as the isotonic regression problem. Often, only a small subset of the features affects the output. This motivates the sparse isotonic regression setting, which we consider here. We provide an upper bound on the expected VC entropy of the space of sparse coordinate-wise monotone functions, and identify the regime of statistical consistency of our estimator. We also propose a linear program to recover the active coordinates, and provide theoretical recovery guarantees.

Kallus, Nathan, Mao, Xiaojie, Udell, Madeleine

Valid causal inference in observational studies often requires controlling for confounders. However, in practice measurements of confounders may be noisy, and can lead to biased estimates of causal effects. We show that we can reduce bias induced by measurement noise using a large number of noisy measurements of the underlying confounders. We propose the use of matrix factorization to infer the confounders from noisy covariates. This flexible and principled framework adapts to missing values, accommodates a wide variety of data types, and can enhance a wide variety of causal inference methods.

Sharpnack, James, Singh, Aarti

We consider the problem of identifying an activation pattern in a complex, large-scale network that is embedded in very noisy measurements. This problem is relevant to several applications, such as identifying traces of a biochemical spread by a sensor network, expression levels of genes, and anomalous activity or congestion in the Internet. Extracting such patterns is a challenging task specially if the network is large (pattern is very high-dimensional) and the noise is so excessive that it masks the activity at any single node. However, typically there are statistical dependencies in the network activation process that can be leveraged to fuse the measurements of multiple nodes and enable reliable extraction of high-dimensional noisy patterns. In this paper, we analyze an estimator based on the graph Laplacian eigenbasis, and establish the limits of mean square error recovery of noisy patterns arising from a probabilistic (Gaussian or Ising) model based on an arbitrary graph structure.

Mazumdar, Arya, Rawat, Ankit Singh

An associative memory is a structure learned from a dataset $\mathcal{M}$ of vectors (signals) in a way such that, given a noisy version of one of the vectors as input, the nearest valid vector from $\mathcal{M}$ (nearest neighbor) is provided as output, preferably via a fast iterative algorithm. Traditionally, binary (or $q$-ary) Hopfield neural networks are used to model the above structure. In this paper, for the first time, we propose a model of associative memory based on sparse recovery of signals. Our basic premise is simple. For a dataset, we learn a set of linear constraints that every vector in the dataset must satisfy.