Goto

Collaborating Authors


New Polynomial Classes for Logic-Based Abduction

AAAI Conferences

We address the problem of propositional logic-based abduction, i.e., the problem of searching for a best explanation for a given propositional observation according to a given propositional knowledge base. We give a general algorithm, based on the notion of projection; then we study restrictions over the representations of the knowledge base and of the query, and find new polynomial classes of abduction problems.


A Survey of Available Corpora for Building Data-Driven Dialogue Systems

arXiv.org Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.


Computers and Thought

Classics

E.A. Feigenbaum and J. Feldman (Eds.). Computers and Thought. McGraw-Hill, 1963. This collection includes twenty classic papers by such pioneers as A. M. Turing and Marvin Minsky who were behind the pivotal advances in artificially simulating human thought processes with computers. All Parts are available as downloadable pdf files; most individual chapters are also available separately. COMPUTING MACHINERY AND INTELLIGENCE. A. M. Turing. CHESS-PLAYING PROGRAMS AND THE PROBLEM OF COMPLEXITY. Allen Newell, J.C. Shaw and H.A. Simon. SOME STUDIES IN MACHINE LEARNING USING THE GAME OF CHECKERS. A. L. Samuel. EMPIRICAL EXPLORATIONS WITH THE LOGIC THEORY MACHINE: A CASE STUDY IN HEURISTICS. Allen Newell J.C. Shaw and H.A. Simon. REALIZATION OF A GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter. EMPIRICAL EXPLORATIONS OF THE GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter, J.R. Hansen, and D. W. Loveland. SUMMARY OF A HEURISTIC LINE BALANCING PROCEDURE. Fred M. Tonge. A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC INTEGRATION PROBLEMS IN FRESHMAN CALCULUS. James R. Slagle. BASEBALL: AN AUTOMATIC QUESTION ANSWERER. Green, Bert F. Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. INFERENTIAL MEMORY AS THE BASIS OF MACHINES WHICH UNDERSTAND NATURAL LANGUAGE. Robert K. Lindsay. PATTERN RECOGNITION BY MACHINE. Oliver G. Selfridge and Ulric Neisser. A PATTERN-RECOGNITION PROGRAM THAT GENERATES, EVALUATES, AND ADJUSTS ITS OWN OPERATORS. Leonard Uhr and Charles Vossler. GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT. Allen Newell and H.A. Simon. THE SIMULATION OF VERBAL LEARNING BEHAVIOR. Edward A. Feigenbaum. PROGRAMMING A MODEL OF HUMAN CONCEPT FORMULATION. Earl B. Hunt and Carl I. Hovland. SIMULATION OF BEHAVIOR IN THE BINARY CHOICE EXPERIMENT Julian Feldman. A MODEL OF THE TRUST INVESTMENT PROCESS. Geoffrey P. E. Clarkson. A COMPUTER MODEL OF ELEMENTARY SOCIAL BEHAVIOR. John T. Gullahorn and Jeanne E. Gullahorn. TOWARD INTELLIGENT MACHINES. Paul Armer. STEPS TOWARD ARTIFICIAL INTELLIGENCE. Marvin Minsky. A SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY TO THE LITERATURE ON ARTIFICIAL INTELLIGENCE. Marvin Minsky.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.