Goto

Collaborating Authors


Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

Neural Information Processing Systems

We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.


Audio samples from "Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis"

#artificialintelligence

Abstract: We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.


Speaker identification from the sound of the human breath

arXiv.org Machine Learning

This paper examines the speaker identification potential of breath sounds in continuous speech. Speech is largely produced during exhalation. In order to replenish air in the lungs, speakers must periodically inhale. When inhalation occurs in the midst of continuous speech, it is generally through the mouth. Intra-speech breathing behavior has been the subject of much study, including the patterns, cadence, and variations in energy levels. However, an often ignored characteristic is the {\em sound} produced during the inhalation phase of this cycle. Intra-speech inhalation is rapid and energetic, performed with open mouth and glottis, effectively exposing the entire vocal tract to enable maximum intake of air. This results in vocal tract resonances evoked by turbulence that are characteristic of the speaker's speech-producing apparatus. Consequently, the sounds of inhalation are expected to carry information about the speaker's identity. Moreover, unlike other spoken sounds which are subject to active control, inhalation sounds are generally more natural and less affected by voluntary influences. The goal of this paper is to demonstrate that breath sounds are indeed bio-signatures that can be used to identify speakers. We show that these sounds by themselves can yield remarkably accurate speaker recognition with appropriate feature representations and classification frameworks.


Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet

arXiv.org Machine Learning

We investigated the training of a shared model for both text-to-speech (TTS) and voice conversion (VC) tasks. We propose using an extended model architecture of Tacotron, that is a multi-source sequence-to-sequence model with a dual attention mechanism as the shared model for both the TTS and VC tasks. This model can accomplish these two different tasks respectively according to the type of input. An end-to-end speech synthesis task is conducted when the model is given text as the input while a sequence-to-sequence voice conversion task is conducted when it is given the speech of a source speaker as the input. Waveform signals are generated by using WaveNet, which is conditioned by using a predicted mel-spectrogram. We propose jointly training a shared model as a decoder for a target speaker that supports multiple sources. Listening experiments show that our proposed multi-source encoder-decoder model can efficiently achieve both the TTS and VC tasks.